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The GaussianProcess Class

Implementation of a Gaussian Process Emulator.

This class provides an interface to fit a Gaussian Process Emulator to a set of training
data. The class can be initialized from either a pair of inputs/targets arrays, or a file
holding data saved from a previous emulator instance (saved via the save_emulator
method). Once the emulator has been created, the class provides methods for fitting
optimal hyperparameters, changing hyperparameter values, making predictions, and other
calculations associated with fitting and making predictions.

The internal emulator structure involves arrays for the inputs, targets, and hyperparameters.
Other useful information are the number of training examples n and the number of input
parameters D. These parameters are available externally through the get_n and
get_D methods

Example:

>>> import numpy as np
>>> from mogp_emulator import GaussianProcess
>>> x = np.array([[1., 2., 3.], [4., 5., 6.]])
>>> y = np.array([4., 6.])
>>> gp = GaussianProcess(x, y)
>>> print(gp)
Gaussian Process with 2 training examples and 3 input variables
>>> gp.get_n()
2
>>> gp.get_D()
3
>>> np.random.seed(47)
>>> gp.learn_hyperparameters()
(5.140462159403397, array([-13.02460687,  -4.02939647, -39.2203646 ,   3.25809653]))
>>> x_predict = np.array([[2., 3., 4.], [7., 8., 9.]])
>>> gp.predict(x_predict)
(array([4.74687618, 6.84934016]), array([0.01639298, 1.05374973]),
array([[8.91363045e-05, 7.18827798e-01, 3.74439445e-16],
       [4.64005897e-06, 3.74191346e-02, 1.94917337e-17]]))






	
class mogp_emulator.GaussianProcess.GaussianProcess(*args)

	Implementation of a Gaussian Process Emulator.

This class provides an interface to fit a Gaussian Process Emulator to a set of training
data. The class can be initialized from either a pair of inputs/targets arrays, or a file
holding data saved from a previous emulator instance (saved via the save_emulator
method). Once the emulator has been created, the class provides methods for fitting
optimal hyperparameters, changing hyperparameter values, making predictions, and other
calculations associated with fitting and making predictions.

The internal emulator structure involves arrays for the inputs, targets, and hyperparameters.
Other useful information are the number of training examples n and the number of input
parameters D. These parameters are available externally through the get_n and
get_D methods

Example:

>>> import numpy as np
>>> from mogp_emulator import GaussianProcess
>>> x = np.array([[1., 2., 3.], [4., 5., 6.]])
>>> y = np.array([4., 6.])
>>> gp = GaussianProcess(x, y)
>>> print(gp)
Gaussian Process with 2 training examples and 3 input variables
>>> gp.get_n()
2
>>> gp.get_D()
3
>>> np.random.seed(47)
>>> gp.learn_hyperparameters()
(5.140462159403397, array([-13.02460687,  -4.02939647, -39.2203646 ,   3.25809653]))
>>> x_predict = np.array([[2., 3., 4.], [7., 8., 9.]])
>>> gp.predict(x_predict)
(array([4.74687618, 6.84934016]), array([0.01639298, 1.05374973]),
array([[8.91363045e-05, 7.18827798e-01, 3.74439445e-16],
       [4.64005897e-06, 3.74191346e-02, 1.94917337e-17]]))






	
__init__(*args)

	Create a new GP Emulator

Creates a new GP Emulator from either the input data and targets to be fit or a
file holding the input/targets and (optionally) learned parameter values.

Arguments passed to the __init__ method must be either two arguments which
are numpy arrays inputs and targets, described below, three arguments
which are the same inputs and targets arrays plus a float representing
the nugget parameter, or a single argument which is the filename (string or file
handle) of a previously saved emulator.

inputs is a 2D array-like object holding the input data, whose shape is
n by D, where n is the number of training examples to be fit and D
is the number of input variables to each simulation.

targets is the target data to be fit by the emulator, also held in an array-like
object. This must be a 1D array of length n.

nugget is the additional noise added to the emulator targets when fitting. This
can take on values None (in which case, noise will be added adaptively to
stabilize fitting), or a non-negative float (in which case, a fixed noise level
will be used). If no value is specified for the nugget parameter, None
is the default.

If two or three input arguments inputs, targets, and optionally nugget are
given:


	Parameters

	
	inputs (ndarray) – Numpy array holding emulator input parameters. Must be 2D with shape
n by D, where n is the number of training examples and
D is the number of input parameters for each output.


	targets (ndarray) – Numpy array holding emulator targets. Must be 1D with length n


	nugget – Noise to be added to the diagonal or None. A float specifies the
noise level explicitly, while if None is given, the noise will set
to be as small as possible to ensure stable inversion of the covariance
matrix. Optional, default is None.








If one input argument emulator_file is given:


	Parameters

	emulator_file (str or file) – Filename or file object for saved emulator parameters (using
the save_emulator method)



	Returns

	New GaussianProcess instance



	Return type

	GaussianProcess










	
get_D()

	Returns number of inputs for the emulator


	Returns

	Number of inputs for the emulator object



	Return type

	int










	
get_n()

	Returns number of training examples for the emulator


	Returns

	Number of training examples for the emulator object



	Return type

	int










	
get_nugget()

	Returns emulator nugget parameter

Returns current value of the nugget parameter. If the nugget is selected adaptively, returns None.


	Returns

	Current nugget value, either a float or None



	Return type

	float or None










	
get_params()

	Returns emulator parameters

Returns current parameters for the emulator as a numpy array if they have been fit. If no
parameters have been fit, returns None.


	Returns

	Current parameter values (numpy array of length D + 1), or None if the
parameters have not been fit.



	Return type

	ndarray or None










	
hessian(theta)

	Calculate the Hessian of the negative log-likelihood

Calculate the Hessian of the negative log-likelihood with respect to
the hyperparameters. Note that this function is normally used only when fitting
the hyperparameters, and it is not needed to make predictions. It is also used
to estimate an appropriate step size when fitting hyperparameters using
the lognormal approximation or MCMC sampling.

When used in an optimization routine, the hessian method is called after
evaluating the loglikelihood method. The implementation takes advantage of
this by storing the inverse of the covariance matrix, which is expensive to
compute and is used by the loglikelihood and partial_devs methods as well.
If the function is evaluated with a different set of parameters than was previously
used to set the log-likelihood, the method calls _set_params to compute the needed
information. However, caling hessian does not evaluate the log-likelihood,
so it does not change the cached values of the parameters or log-likelihood.


	Parameters

	theta (ndarray) – Value of the hyperparameters. Must be array-like with shape (D + 1,)



	Returns

	Hessian of the negative log-likelihood (array with shape
(D + 1, D + 1))



	Return type

	ndarray










	
learn_hyperparameters(n_tries=15, theta0=None, method='L-BFGS-B', **kwargs)

	Fit hyperparameters by attempting to minimize the negative log-likelihood

Fits the hyperparameters by attempting to minimize the negative log-likelihood multiple times
from a given starting location and using a particular minimization method. The best result
found among all of the attempts is returned, unless all attempts to fit the parameters result
in an error (see below).

If the method encounters an overflow (this can result because the parameter values stored are
the logarithm of the actual hyperparameters to enforce positivity) or a linear algebra error
(occurs when the covariance matrix cannot be inverted, even with the addition of additional
noise added along the diagonal if adaptive noise was selected by setting the nugget parameter
to be None), the iteration is skipped. If all attempts to find optimal hyperparameters result
in an error, then the method raises an exception.

The theta0 parameter is the point at which the first iteration will start. If more than
one attempt is made, subsequent attempts will use random starting points.

The user can specify the details of the minimization method, using any of the gradient-based
optimizers available in scipy.optimize.minimize. Any additional parameters beyond the method
specification can be passed as keyword arguments.

The method returns the minimum negative log-likelihood found and the parameter values at
which that minimum was obtained. The method also sets the current values of the hyperparameters
to these optimal values and pre-computes the matrices needed to make predictions.


	Parameters

	
	n_tries (int) – Number of attempts to minimize the negative log-likelihood function.
Must be a positive integer (optional, default is 15)


	theta0 (None or ndarray) – Initial starting point for the first iteration. If present, must be
array-like with shape (D + 1,). If None is given, then
a random value is chosen. (Default is None)


	method (str) – Minimization method to be used. Can be any gradient-based optimization
method available in scipy.optimize.minimize. (Default is 'L-BFGS-B')


	**kwargs – Additional keyword arguments to be passed to the minimization routine.
see available parameters in scipy.optimize.minimize for details.






	Returns

	Minimum negative log-likelihood values and hyperparameters (numpy array with shape
(D + 1,)) used to obtain those values. The method also sets the current values
of the hyperparameters to these optimal values and pre-computes the matrices needed
to make predictions.



	Return type

	tuple containing a float and an ndarray










	
loglikelihood(theta)

	Calculate the negative log-likelihood at a particular value of the hyperparameters

Calculate the negative log-likelihood for the given set of parameters. Calling this
method sets the parameter values and computes the needed inverse matrices in order
to evaluate the log-likelihood and its derivatives. In addition to returning the
log-likelihood value, it stores the current value of the hyperparameters and
log-likelihood in attributes of the object.


	Parameters

	theta (ndarray) – Value of the hyperparameters. Must be array-like with shape (D + 1,)



	Returns

	negative log-likelihood



	Return type

	float










	
partial_devs(theta)

	Calculate the partial derivatives of the negative log-likelihood

Calculate the partial derivatives of the negative log-likelihood with respect to
the hyperparameters. Note that this function is normally used only when fitting
the hyperparameters, and it is not needed to make predictions.

During normal use, the partial_devs method is called after evaluating the
loglikelihood method. The implementation takes advantage of this by storing
the inverse of the covariance matrix, which is expensive to compute and is used
by the loglikelihood, partial_devs, and hessian methods. If the function
is evaluated with a different set of parameters than was previously used to set
the log-likelihood, the method calls _set_params to compute the needed
information. However, caling partial_devs does not evaluate the log-likelihood,
so it does not change the cached values of the parameters or log-likelihood.


	Parameters

	theta (ndarray) – Value of the hyperparameters. Must be array-like with shape (D + 1,)



	Returns

	partial derivatives of the negative log-likelihood (array with shape
(D + 1,))



	Return type

	ndarray










	
predict(testing, do_deriv=True, do_unc=True)

	Make a prediction for a set of input vectors

Makes predictions for the emulator on a given set of input vectors. The input vectors
must be passed as a (n_predict, D) or (D,) shaped array-like object, where
n_predict is the number of different prediction points under consideration and
D is the number of inputs to the emulator. If the prediction inputs array has shape
(D,), then the method assumes n_predict == 1. The prediction is returned as an
(n_predict, ) shaped numpy array as the first return value from the method.

Optionally, the emulator can also calculate the uncertainties in the predictions
and the derivatives with respect to each input parameter. If the uncertainties are
computed, they are returned as the second output from the method as an (n_predict,)
shaped numpy array. If the derivatives are computed, they are returned as the third
output from the method as an (n_predict, D) shaped numpy array.

As with the fitting, this computation can be done independently for each emulator
and thus can be done in parallel.


	Parameters

	
	testing (ndarray) – Array-like object holding the points where predictions will be made.
Must have shape (n_predict, D) or (D,) (for a single prediction)


	do_deriv (bool) – (optional) Flag indicating if the derivatives are to be computed.
If False the method returns None in place of the derivative
array. Default value is True.


	do_unc (bool) – (optional) Flag indicating if the uncertainties are to be computed.
If False the method returns None in place of the uncertainty
array. Default value is True.


	processes (int or None) – (optional) Number of processes to use when making the predictions.
Must be a positive integer or None to use the number of
processors on the computer (default is None)






	Returns

	Tuple of numpy arrays holding the predictions, uncertainties, and derivatives,
respectively. Predictions and uncertainties have shape (n_predict,)
while the derivatives have shape (n_predict, D). If the do_unc or
do_deriv flags are set to False, then those arrays are replaced by
None.



	Return type

	tuple










	
save_emulator(filename)

	Write emulators to disk

Method saves the emulator to disk using the given filename or file handle. The method
writes the inputs and targets arrays to file. If the model has been assigned parameters,
either manually or by fitting, those parameters are saved as well. Once saved, the
emulator can be read by passing the file name or handle to the one-argument __init__
method.


	Parameters

	filename (str or file) – Name of file (or file handle) to which the emulator will be saved.



	Returns

	None










	
set_nugget(nugget)

	Set the nugget parameter for the emulator

Method for changing the nugget parameter for the emulator. When a new emulator is
initilized, this is set to None.

The nugget parameter controls how noise is added to the covariance matrix in order to
stabilize the inversion or smooth the emulator predictions. If nugget is a non-negative
float, then that particular value is used for the nugget. Note that setting this parameter
to be zero enforces that the emulator strictly interpolates between points. Alternatively,
if nugget is set to be None, the fitting routine will adaptively make the noise
parameter as large as is needed to ensure that the emulator can be fit.


	Parameters

	nugget (None or float) – Controls how noise is added to the emulator. If nugget is a nonnegative
float, then this manually sets the noise parameter (if negative, this will
lead to an error), with nugget = 0 resulting in interpolation with no
smoothing noise added. nugget = None will adaptively select the
smallest value of the noise term that still leads to a stable inversion of
the matrix. Default behavior is nugget = None.



	Returns

	None



	Return type

	None

















          

      

      

    

  

    
      
          
            
  
The MultiOutputGP Class

Implementation of a multiple-output Gaussian Process Emulator.

This class provides an interface to fit a Gaussian Process Emulator to multiple targets
using the same input data. The class creates all of the necessary sub-emulators from
the input data and provides interfaces to the learn_hyperparameters and predict
methods of the sub-emulators. Because the emulators are all fit independently, the
class provides the option to use multiple processes to fit the emulators and make
predictions in parallel.

The emulators are stored internally in a list. Other useful information stored is the
numer of emulators n_emulators, number of training examples n, and number of
input parameters D. These other variables are made available externally through
the get_n_emulators, get_n, and get_D methods.

Example:

>>> import numpy as np
>>> from mogp_emulator import MultiOutputGP
>>> x = np.array([[1., 2., 3.], [4., 5., 6.]])
>>> y = np.array([[4., 6.], [5., 7.]])
>>> mogp = MultiOutputGP(x, y)
>>> print(mogp)
Multi-Output Gaussian Process with:
2 emulators
2 training examples
3 input variables
>>> mogp.get_n_emulators()
2
>>> mogp.get_n()
2
>>> mogp.get_D()
3
>>> np.random.seed(47)
>>> mogp.learn_hyperparameters()
[(5.140462159403397, array([-13.02460687,  -4.02939647, -39.2203646 ,   3.25809653])),
 (5.322783716197557, array([-18.448741  ,  -5.46557813,  -4.81355357,   3.61091708]))]
>>> x_predict = np.array([[2., 3., 4.], [7., 8., 9.]])
>>> mogp.predict(x_predict)
(array([[4.74687618, 6.84934016],
       [5.7350324 , 8.07267051]]),
 array([[0.01639298, 1.05374973],
       [0.01125792, 0.77568672]]),
 array([[[8.91363045e-05, 7.18827798e-01, 3.74439445e-16],
        [4.64005897e-06, 3.74191346e-02, 1.94917337e-17]],
       [[5.58461022e-07, 2.42945502e-01, 4.66315152e-01],
        [1.24593861e-07, 5.42016666e-02, 1.04035918e-01]]]))






	
class mogp_emulator.MultiOutputGP.MultiOutputGP(*args)

	Implementation of a multiple-output Gaussian Process Emulator.

This class provides an interface to fit a Gaussian Process Emulator to multiple targets
using the same input data. The class creates all of the necessary sub-emulators from
the input data and provides interfaces to the learn_hyperparameters and predict
methods of the sub-emulators. Because the emulators are all fit independently, the
class provides the option to use multiple processes to fit the emulators and make
predictions in parallel.

The emulators are stored internally in a list. Other useful information stored is the
numer of emulators n_emulators, number of training examples n, and number of
input parameters D. These other variables are made available externally through
the get_n_emulators, get_n, and get_D methods.

Example:

>>> import numpy as np
>>> from mogp_emulator import MultiOutputGP
>>> x = np.array([[1., 2., 3.], [4., 5., 6.]])
>>> y = np.array([[4., 6.], [5., 7.]])
>>> mogp = MultiOutputGP(x, y)
>>> print(mogp)
Multi-Output Gaussian Process with:
2 emulators
2 training examples
3 input variables
>>> mogp.get_n_emulators()
2
>>> mogp.get_n()
2
>>> mogp.get_D()
3
>>> np.random.seed(47)
>>> mogp.learn_hyperparameters()
[(5.140462159403397, array([-13.02460687,  -4.02939647, -39.2203646 ,   3.25809653])),
 (5.322783716197557, array([-18.448741  ,  -5.46557813,  -4.81355357,   3.61091708]))]
>>> x_predict = np.array([[2., 3., 4.], [7., 8., 9.]])
>>> mogp.predict(x_predict)
(array([[4.74687618, 6.84934016],
       [5.7350324 , 8.07267051]]),
 array([[0.01639298, 1.05374973],
       [0.01125792, 0.77568672]]),
 array([[[8.91363045e-05, 7.18827798e-01, 3.74439445e-16],
        [4.64005897e-06, 3.74191346e-02, 1.94917337e-17]],
       [[5.58461022e-07, 2.42945502e-01, 4.66315152e-01],
        [1.24593861e-07, 5.42016666e-02, 1.04035918e-01]]]))






	
__init__(*args)

	Create a new multi-output GP Emulator

Creates a new multi-output GP Emulator from either the input data and targets to
be fit or a file holding the input/targets and (optionally) learned parameter values.

Arguments passed to the __init__ method must be two or three arguments which
are numpy arrays inputs and targets and optionally nugget, described below,
or a single argument which is the filename (string or file handle) of a previously saved emulator.

inputs is a 2D array-like object holding the input data, whose shape is
n by D, where n is the number of training examples to be fit and D
is the number of input variables to each simulation. Because the model assumes all
outputs are drawn from the same identical set of simulations (i.e. the normal use
case is to fit a series of computer simulations with multiple outputs from the same
input), the input to each emulator is identical.

targets is the target data to be fit by the emulator, also held in an array-like
object. This can be either a 1D or 2D array, where the last dimension must have length
n. If the targets array is of shape (n_emulators,n), then the emulator fits
a total of n_emulators to the different target arrays, while if targets has shape
(n,), a single emulator is fit.

nugget is a list or other iterable of nugget parameters for each emulator. Its
length must match the number of targets to be fit. The values must be None (adaptive
noise addition) or a non-negative float, and the emulators can have different noise
behaviors.

If two  or three input arguments inputs, targets, and optionally nugget are
given:


	Parameters

	
	inputs (ndarray) – Numpy array holding emulator input parameters. Must be 2D with shape
n by D, where n is the number of training examples and
D is the number of input parameters for each output.


	targets (ndarray) – Numpy array holding emulator targets. Must be 2D or 1D with length
n in the final dimension. The first dimension is of length
n_emulators (defaults to a single emulator if the input is 1D)


	nugget – None or list or other iterable holding values for nugget parameter
for each emulator. Length must be n_emulators. Individual values
can be None (adaptive noise addition), or a non-negative float.
This parameter is optional, and defaults to None








If one input argument emulator_file is given:


	Parameters

	emulator_file (str or file) – Filename or file object for saved emulator parameters (using
the save_emulator method)



	Returns

	New MultiOutputGP instance



	Return type

	MultiOutputGP










	
get_D()

	Returns number of inputs for each emulator


	Returns

	Number of inputs for each emulator in the object



	Return type

	int










	
get_n()

	Returns number of training examples in each emulator


	Returns

	Number of training examples in each emulator in the object



	Return type

	int










	
get_n_emulators()

	Returns the number of emulators


	Returns

	Number of emulators in the object



	Return type

	int










	
get_nugget()

	Returns value of nugget for all emulators

Returns value of nugget for all emulators as a list. Values can be None, or a nonnegative
float for each emulator.


	Returns

	nugget values for all emulators (list of length n_emulators containint floats or
None. nugget type and values can vary across all emulators if desired.)



	Return type

	list










	
learn_hyperparameters(n_tries=15, theta0=None, processes=None, method='L-BFGS-B', **kwargs)

	Fit hyperparameters for each model

Fit the hyperparameters for each emulator. Options that can be specified include
the number of different initial conditions to try during the optimization step,
the level of verbosity of output during the fitting, the initial values of the
hyperparameters to use when starting the optimization step, and the number of
processes to use when fitting the models. Since each model can be fit independently
of the others, parallelization can significantly improve the speed at which
the models are fit.

Returns a list holding n_emulators tuples, each of which contains the minimum
negative log-likelihood and a numpy array holding the optimal parameters found for
each model.

If the method encounters an overflow (this can result because the parameter values stored are
the logarithm of the actual hyperparameters to enforce positivity) or a linear algebra error
(occurs when the covariance matrix cannot be inverted, even with the addition of additional
“nugget” or noise added along the diagonal), the iteration is skipped. If all attempts to
find optimal hyperparameters result in an error, then the method raises an exception.


	Parameters

	
	n_tries (int) – (optional) The number of different initial conditions to try when
optimizing over the hyperparameters (must be a positive integer,
default = 15)


	theta0 (ndarray or None) – (optional) Initial value of the hyperparameters to use in the optimization
routine (must be array-like with a length of D + 1, where D is
the number of input parameters to each model). Default is None.


	processes (int or None) – (optional) Number of processes to use when fitting the model.
Must be a positive integer or None to use the number of
processors on the computer (default is None)


	method (str) – Minimization method to be used. Can be any gradient-based optimization
method available in scipy.optimize.minimize. (Default is 'L-BFGS-B')


	**kwargs – Additional keyword arguments to be passed to the minimization routine.
see available parameters in scipy.optimize.minimize for details.






	Returns

	List holding n_emulators tuples of length 2. Each tuple contains
the minimum negative log-likelihood for that particular emulator and a
numpy array of length D + 2 holding the corresponding hyperparameters



	Return type

	list










	
predict(testing, do_deriv=True, do_unc=True, processes=None)

	Make a prediction for a set of input vectors

Makes predictions for each of the emulators on a given set of input vectors. The
input vectors must be passed as a (n_predict, D) or (D,) shaped array-like
object, where n_predict is the number of different prediction points under
consideration and D is the number of inputs to the emulator. If the prediction
inputs array has shape (D,), then the method assumes n_predict == 1. 
The prediction points are passed to each emulator and the predictions are collected
into an (n_emulators, n_predict) shaped numpy array as the first return value
from the method.

Optionally, the emulator can also calculate the uncertainties in the predictions 
and the derivatives with respect to each input parameter. If the uncertainties are
computed, they are returned as the second output from the method as an
(n_emulators, n_predict) shaped numpy array. If the derivatives are computed,
they are returned as the third output from the method as an
(n_emulators, n_predict, D) shaped numpy array.

As with the fitting, this computation can be done independently for each emulator
and thus can be done in parallel.


	Parameters

	
	testing (ndarray) – Array-like object holding the points where predictions will be made.
Must have shape (n_predict, D) or (D,) (for a single prediction)


	do_deriv (bool) – (optional) Flag indicating if the derivatives are to be computed.
If False the method returns None in place of the derivative
array. Default value is True.


	do_unc (bool) – (optional) Flag indicating if the uncertainties are to be computed.
If False the method returns None in place of the uncertainty
array. Default value is True.


	processes (int or None) – (optional) Number of processes to use when making the predictions.
Must be a positive integer or None to use the number of
processors on the computer (default is None)






	Returns

	Tuple of numpy arrays holding the predictions, uncertainties, and derivatives,
respectively. Predictions and uncertainties have shape (n_emulators, n_predict)
while the derivatives have shape (n_emulators, n_predict, D). If
the do_unc or do_deriv flags are set to False, then those arrays
are replaced by None.



	Return type

	tuple










	
save_emulators(filename)

	Write emulators to disk

Method saves emulators to disk using the given filename or file handle. The (common)
inputs to all emulators are saved, and all targets are collected into a single numpy
array (this saves the data in the same format used in the two-argument __init__
method). If the model has been assigned parameters, either manually or by fitting,
those parameters are saved as well. Once saved, the emulator can be read by passing
the file name or handle to the one-argument __init__ method.


	Parameters

	filename (str or file) – Name of file (or file handle) to which the emulators will be saved.



	Returns

	None










	
set_nugget(nugget)

	Sets value of nugget for all emulators

Sets value of nugget for all emulators from values provided as a list or other iterable.
Values can be None, or a nonnegative float for each emulator. The length of the input
list must have length n_emulators.


	Parameters

	nugget – List of nugget values for all emulators (must be of length n_emulators
and contain floats or None. Nugget type and values can vary across all
emulators if desired.)

















          

      

      

    

  

    
      
          
            
  
The Kernel Class

Kernel module, implements a few standard stationary kernels for use with the
GaussianProcess class. At present, kernels can only be selected manually by setting
the kernel attribute of the GP. The default is to use the SquaredExponential
kernel, but this can be changed once the GaussianProcess instance is created.


	
class mogp_emulator.Kernel.Kernel

	Generic class representing a stationary kernel

This base class implements the necessary scaffolding for defining a stationary kernel.
Stationary kernels are only dependent on a distance measure between any two points, so
the base class holds all the necessary information for doing the distance computation.
Individual subclasses will implement the functional dependence of the kernel on the
distance, plus first and second derivatives (if desired) to compute the gradient or
Hessian of the kernel with respect to the hyperparameters.

This implementation uses a scaled euclidean distance metric. Each individual parameter
has a hyperparameter scale associated with it that is used in the distance computation.
If a different metric is to be defined, a new base class needs to be defined that
implements the calc_r, and optionally calc_drdtheta and calc_d2rdtheta2
methods if gradient or Hessian computation is desired. The methods kernel_f,
kernel_gradient, and kernel_hessian can then be used to compute the appropriate
quantities with no further modification.

Note that the Kernel object just collates all of the methods together; the class itself
does not hold any information on the data point or hyperparamters, which are passed
directly to the appropriate methods. Thus, no information needs to be provided when
creating a new Kernal instance.


	
calc_K(r)

	Calculate kernel as a function of distance

This method implements the kernel function as a function of distance. Given an array
of distances, this function evaluates the kernel function of those values, returning
an array of the same shape. Note that this is not implemented for the base class, as
this must be defined for a specific kernel.


	Parameters

	r (array-like) – Array holding distances between all points. All values in this array must be
non-negative.



	Returns

	Array holding kernel evaluations, with the same shape as the input r



	Return type

	ndarray










	
calc_d2Kdr2(r)

	Calculate second derivative of kernel as a function of distance

This method implements the second derivative of the kernel function as a function of
distance. Given an array of distances, this function evaluates the second derivative
function of those values, returning an array of the same shape. Note that this is
not implemented for the base class, as this must be defined for a specific kernel.


	Parameters

	r (array-like) – Array holding distances between all points. All values in this array must be
non-negative.



	Returns

	Array holding kernel second derivatives, with the same shape as the input r



	Return type

	ndarray










	
calc_d2rdtheta2(x1, x2, params)

	Calculate all second derivatives of the distance between all pairs of points with
respect to the hyperparameters

This method computes all second derivatives of the scaled Euclidean distance
between all pairs of points in x1 and x2 with respect to the
hyperparameters. The gradient is held in an array with shape (D, D, n1, n2),
where D is the length of params, n1 is the length of the first axis
of x1, and n2 is the length of the first axis of x2. This is used in
the computation of the gradient and Hessian of the kernel. The first two indices
represents the different derivatives with respect to each hyperparameter.


	Parameters

	
	x1 (array-like) – First input array. Must be a 1-D or 2-D array, with the length of
the last dimension matching the last dimension of x2 and
one less than the length of params. x1 may be 1-D if either
each point consists of a single parameter (and params has length
2) or the array only contains a single point (in which case, the array
will be reshaped to (1, D - 1)).


	x2 (array-like) – Second input array. The same restrictions that apply to x1 also
apply here.


	params (array-like) – Hyperparameter array. Must be 1-D with length one greater than
the last dimension of x1 and x2.






	Returns

	Array holding the second derivatives of the pair-wise distances between
points in arrays x1 and x2 with respect to the hyperparameters.
Will be an array with shape (D, D, n1, n2), where D is the length
of params, n1 is the length of the first axis of x1 and
n2 is the length of the first axis of x2. The first two axes
indicates the different derivative components (i.e. the second derivative
with respect to the first parameter is [0,0,:,:], the mixed partial with
respect to the first and second parameters is [0,1,:,:] or [1,0,:,:], etc.)



	Return type

	ndarray










	
calc_dKdr(r)

	Calculate first derivative of kernel as a function of distance

This method implements the first derivative of the kernel function as a function of
distance. Given an array of distances, this function evaluates the derivative
function of those values, returning an array of the same shape. Note that this is
not implemented for the base class, as this must be defined for a specific kernel.


	Parameters

	r (array-like) – Array holding distances between all points. All values in this array must be
non-negative.



	Returns

	Array holding kernel derivatives, with the same shape as the input r



	Return type

	ndarray










	
calc_drdtheta(x1, x2, params)

	Calculate the first derivative of the distance between all pairs of points with
respect to the hyperparameters

This method computes the derivative of the scaled Euclidean distance between
all pairs of points in x1 and x2 with respect to the hyperparameters.
The gradient is held in an array with shape (D, n1, n2), where D is
the length of params, n1 is the length of the first axis of x1,
and n2 is the length of the first axis of x2. This is used in the
computation of the gradient and Hessian of the kernel. The first index
represents the different derivatives with respect to each hyperparameter.


	Parameters

	
	x1 (array-like) – First input array. Must be a 1-D or 2-D array, with the length of
the last dimension matching the last dimension of x2 and
one less than the length of params. x1 may be 1-D if either
each point consists of a single parameter (and params has length
2) or the array only contains a single point (in which case, the array
will be reshaped to (1, D - 1)).


	x2 (array-like) – Second input array. The same restrictions that apply to x1 also
apply here.


	params (array-like) – Hyperparameter array. Must be 1-D with length one greater than
the last dimension of x1 and x2.






	Returns

	Array holding the derivative of the pair-wise distances between
points in arrays x1 and x2 with respect to the hyperparameters.
Will be an array with shape (D, n1, n2), where D is the length
of params, n1 is the length of the first axis of x1 and
n2 is the length of the first axis of x2. The first axis
indicates the different derivative components (i.e. the derivative
with respect to the first parameter is [0,:,:], etc.)



	Return type

	ndarray










	
calc_drdx(x1, x2, params)

	Calculate the first derivative of the distance between all pairs of points with
respect to the first set of inputs

This method computes the derivative of the scaled Euclidean distance between
all pairs of points in x1 and x2 with respect to the first input x1.
The gradient is held in an array with shape (D - 1, n1, n2), where D is the
length of params, n1 is the length of the first axis of
x1, and n2 is the length of the first axis of x2. This is used in the
computation of the derivative of the kernel with respect to the inputs. The first
index represents the different derivatives with respect to each input dimension.


	Parameters

	
	x1 (array-like) – First input array. Must be a 1-D or 2-D array, with the length of
the last dimension matching the last dimension of x2 and
one less than the length of params. x1 may be 1-D if either
each point consists of a single parameter (and params has length
2) or the array only contains a single point (in which case, the array
will be reshaped to (1, D - 1)).


	x2 (array-like) – Second input array. The same restrictions that apply to x1 also
apply here.


	params (array-like) – Hyperparameter array. Must be 1-D with length one greater than
the last dimension of x1 and x2.






	Returns

	Array holding the derivative of the pair-wise distances between
points in arrays x1 and x2 with respect to x1.
Will be an array with shape (D, n1, n2), where D is the length
of params, n1 is the length of the first axis
of x1 and n2 is the length of the first axis of x2. The first
axis indicates the different derivative components (i.e. the derivative
with respect to the first input parameter is [0,:,:], etc.)



	Return type

	ndarray










	
calc_r(x1, x2, params)

	Calculate distance between all pairs of points

This method computes the scaled Euclidean distance between all pairs of points
in x1 and x2. Each component distance is multiplied by the corresponding
hyperparameter prior to summing and taking the square root. For example, if
x1 = [1.], x2 = [2.], and params = [2., 2.] then calc_r would
return \({\sqrt{2(1 - 2)^2}=\sqrt{2}}\) as an array with shape (1,1).


	Parameters

	
	x1 (array-like) – First input array. Must be a 1-D or 2-D array, with the length of
the last dimension matching the last dimension of x2 and
one less than the length of params. x1 may be 1-D if either
each point consists of a single parameter (and params has length
2) or the array only contains a single point (in which case, the array
will be reshaped to (1, D - 1)).


	x2 (array-like) – Second input array. The same restrictions that apply to x1 also
apply here.


	params (array-like) – Hyperparameter array. Must be 1-D with length one greater than
the last dimension of x1 and x2.






	Returns

	Array holding all pair-wise distances between points in arrays x1
and x2. Will be an array with shape (n1, n2), where n1
is the length of the first axis of x1 and n2 is the length
of the first axis of x2.



	Return type

	ndarray










	
kernel_deriv(x1, x2, params)

	Compute kernel gradient for a set of inputs

Returns the value of the kernel gradient for two sets of input points and a choice of
hyperparameters. This function should not need to be modified for different choices
of the kernel function or distance metric, as after checking the inputs it simply
calls the routine to compute the distance metric, kernel function, and the appropriate
derivative functions of the distance and kernel functions.


	Parameters

	
	x1 (array-like) – First input array. Must be a 1-D or 2-D array, with the length of
the last dimension matching the last dimension of x2 and
one less than the length of params. x1 may be 1-D if either
each point consists of a single parameter (and params has length
2) or the array only contains a single point (in which case, the array
will be reshaped to (1, D - 1)).


	x2 (array-like) – Second input array. The same restrictions that apply to x1 also
apply here.


	params (array-like) – Hyperparameter array. Must be 1-D with length one greater than
the last dimension of x1 and x2.






	Returns

	Array holding the gradient of the kernel function between points in arrays
x1 and x2 with respect to the hyperparameters. Will be an array with
shape (D, n1, n2), where D is the length of params, n1 is the
length of the first axis of x1 and n2 is the length of the first axis
of x2. The first axis indicates the different derivative components
(i.e. the derivative with respect to the first parameter is [0,:,:], etc.)



	Return type

	ndarray










	
kernel_f(x1, x2, params)

	Compute kernel values for a set of inputs

Returns the value of the kernel for two sets of input points and a choice of
hyperparameters. This function should not need to be modified for different choices
of the kernel function or distance metric, as after checking the inputs it simply
calls the routine to compute the distance metric and then evaluates the kernel function
for those distances.


	Parameters

	
	x1 (array-like) – First input array. Must be a 1-D or 2-D array, with the length of
the last dimension matching the last dimension of x2 and
one less than the length of params. x1 may be 1-D if either
each point consists of a single parameter (and params has length
2) or the array only contains a single point (in which case, the array
will be reshaped to (1, D - 1)).


	x2 (array-like) – Second input array. The same restrictions that apply to x1 also
apply here.


	params (array-like) – Hyperparameter array. Must be 1-D with length one greater than
the last dimension of x1 and x2.






	Returns

	Array holding all kernel values between points in arrays x1
and x2. Will be an array with shape (n1, n2), where n1
is the length of the first axis of x1 and n2 is the length
of the first axis of x2.



	Return type

	ndarray










	
kernel_hessian(x1, x2, params)

	Calculate the Hessian of the kernel evaluated for all pairs of points with
respect to the hyperparameters

Returns the value of the kernel Hessian for two sets of input points and a choice of
hyperparameters. This function should not need to be modified for different choices
of the kernel function or distance metric, as after checking the inputs it simply
calls the routine to compute the distance metric, kernel function, and the appropriate
derivative functions of the distance and kernel functions.


	Parameters

	
	x1 (array-like) – First input array. Must be a 1-D or 2-D array, with the length of
the last dimension matching the last dimension of x2 and
one less than the length of params. x1 may be 1-D if either
each point consists of a single parameter (and params has length
2) or the array only contains a single point (in which case, the array
will be reshaped to (1, D - 1)).


	x2 (array-like) – Second input array. The same restrictions that apply to x1 also
apply here.


	params (array-like) – Hyperparameter array. Must be 1-D with length one greater than
the last dimension of x1 and x2.






	Returns

	Array holding the Hessian of the pair-wise distances between points in arrays
x1 and x2 with respect to the hyperparameters. Will be an array with
shape (D, D, n1, n2), where D is the length of params, n1 is
the length of the first axis of x1 and n2 is the length of the first
axis of x2. The first two axes indicates the different derivative components
(i.e. the second derivative with respect to the first parameter is [0,0,:,:],
the mixed partial with respect to the first and second parameters is [0,1,:,:]
or [1,0,:,:], etc.)



	Return type

	ndarray










	
kernel_inputderiv(x1, x2, params)

	Compute derivative of Kernel with respect to inputs x1

Returns the value of the kernel derivative with respect to the first set of input
points given inputs and a choice of hyperparameters. This function should not need
to be modified for different choices of the kernel function or distance metric, as
after checking the inputs it simply calls the routine to compute the distance metric,
kernel function, and the appropriate derivative functions of the distance and kernel
functions.


	Parameters

	
	x1 (array-like) – First input array. Must be a 1-D or 2-D array, with the length of
the last dimension matching the last dimension of x2 and
one less than the length of params. x1 may be 1-D if either
each point consists of a single parameter (and params has length
2) or the array only contains a single point (in which case, the array
will be reshaped to (1, D - 1)).


	x2 (array-like) – Second input array. The same restrictions that apply to x1 also
apply here.


	params (array-like) – Hyperparameter array. Must be 1-D with length one greater than
the last dimension of x1 and x2.






	Returns

	Array holding the derivative of the kernel function between points in arrays
x1 and x2 with respect to the first inputs x1. Will be an array with
shape (D, n1, n2), where D is the length of params,
n1 is the length of the first axis of x1 and n2 is the length of the
first axis of x2. The first axis indicates the different derivative components
(i.e. the derivative with respect to the first input dimension is [0,:,:], etc.)



	Return type

	ndarray














	
class mogp_emulator.Kernel.SquaredExponential

	Implementation of the squared exponential kernel

Class representing a squared exponential kernel. It derives from the base class for a
stationary kernel, using the scaled Euclidean distance metric. The subclass then just
defines the kernel function and its derivatives.


	
calc_K(r)

	Compute K(r) for the squared exponential kernel

This method implements the squared exponential kernel function as a function of distance.
Given an array of distances, this function evaluates the kernel function of those values,
returning an array of the same shape.


	Parameters

	r (array-like) – Array holding distances between all points. All values in this array must be
non-negative.



	Returns

	Array holding kernel evaluations, with the same shape as the input r



	Return type

	ndarray










	
calc_d2Kdr2(r)

	Calculate second derivative of the squared exponential kernel as a function of distance

This method implements the second derivative of the squared exponential kernel function
as a function of distance. Given an array of distances, this function evaluates the
second derivative function of those values, returning an array of the same shape.


	Parameters

	r (array-like) – Array holding distances between all points. All values in this array must be
non-negative.



	Returns

	Array holding kernel second derivatives, with the same shape as the input r



	Return type

	ndarray










	
calc_dKdr(r)

	Calculate first derivative of the squared exponential kernel as a function of distance

This method implements the first derivative of the squared exponential kernel function
as a function of distance. Given an array of distances, this function evaluates the derivative
function of those values, returning an array of the same shape.


	Parameters

	r (array-like) – Array holding distances between all points. All values in this array must be
non-negative.



	Returns

	Array holding kernel derivatives, with the same shape as the input r



	Return type

	ndarray














	
class mogp_emulator.Kernel.Matern52

	Implementation of the Matern 5/2 kernel

Class representing the Matern 5/2 kernel. It derives from the base class for a
stationary kernel, using the scaled Euclidean distance metric. The subclass then just
defines the kernel function and its derivatives.


	
calc_K(r)

	Compute K(r) for the Matern 5/2 kernel

This method implements the Matern 5/2 kernel function as a function of distance.
Given an array of distances, this function evaluates the kernel function of those values,
returning an array of the same shape.


	Parameters

	r (array-like) – Array holding distances between all points. All values in this array must be
non-negative.



	Returns

	Array holding kernel evaluations, with the same shape as the input r



	Return type

	ndarray










	
calc_d2Kdr2(r)

	Calculate second derivative of the squared exponential kernel as a function of distance

This method implements the second derivative of the squared exponential kernel function
as a function of distance. Given an array of distances, this function evaluates the
second derivative function of those values, returning an array of the same shape.


	Parameters

	r (array-like) – Array holding distances between all points. All values in this array must be
non-negative.



	Returns

	Array holding kernel second derivatives, with the same shape as the input r



	Return type

	ndarray










	
calc_dKdr(r)

	Calculate first derivative of the Matern 5/2 kernel as a function of distance

This method implements the first derivative of the Matern 5/2 kernel function
as a function of distance. Given an array of distances, this function evaluates the derivative
function of those values, returning an array of the same shape.


	Parameters

	r (array-like) – Array holding distances between all points. All values in this array must be
non-negative.



	Returns

	Array holding kernel derivatives, with the same shape as the input r



	Return type

	ndarray

















          

      

      

    

  

    
      
          
            
  
The ExperimentalDesign Class

Base class representing a generic one-shot design of experiments with uncorrelated parameters

This class provides the base implementation for a class for designing experiments to sample
the parameter space of a complex model. The parameter space can be specified in a variety
of ways, but essentially the user must provide a Probability Point Function (PPF, or inverse 
of the Cumulative Distribution Function) for each input parameter. Each PPF function takes a 
single numeric input and maps from the interval \([0,1]\) to the desired parameter
distribution value for a given parameter, and each parameter has a separate function describing 
its distribution. Note that this makes the assumption of no correlations between any of the
parameter values (a future version may implement an experimental design where there are such
parameter correlations). Once the design is initialized, a desired number of samples can be
drawn from the design, returning an array holding the desired number of samples from the
parameter space.

Internally, the class holds the set of PPFs for all of the parameter values, and samples are
drawn by calling the sample method. To draw the samples, a specific method _draw_samples
must be defined that generates a series of points in the \([0,1]^n\) hypercube, where
\(n\) is the number of paramters. This set of samples from the hypercube is then mapped to
the parameter space using the given PPF functions. Thus, defining a new design protocol only
requires defining a new _draw_samples method and redefining the __init__ method to set
the internal method attribute. By default, no _draw_samples method is defined, so the
base ExperimentalDesign class is only intended to be used to define new protocols (trying 
to sample from an ExperimentalDesign instance will return a NotImplementedError).


	
class mogp_emulator.ExperimentalDesign.ExperimentalDesign(*args)

	Base class representing a generic one-shot design of experiments with uncorrelated parameters

This class provides the base implementation for a class for designing experiments to sample
the parameter space of a complex model. The parameter space can be specified in a variety
of ways, but essentially the user must provide a Probability Point Function (PPF, or inverse 
of the Cumulative Distribution Function) for each input parameter. Each PPF function takes a 
single numeric input and maps from the interval \([0,1]\) to the desired parameter
distribution value for a given parameter, and each parameter has a separate function describing 
its distribution. Note that this makes the assumption of no correlations between any of the
parameter values (a future version may implement an experimental design where there are such
parameter correlations). Once the design is initialized, a desired number of samples can be
drawn from the design, returning an array holding the desired number of samples from the
parameter space.

Internally, the class holds the set of PPFs for all of the parameter values, and samples are
drawn by calling the sample method. To draw the samples, a specific method _draw_samples
must be defined that generates a series of points in the \([0,1]^n\) hypercube, where
\(n\) is the number of paramters. This set of samples from the hypercube is then mapped to
the parameter space using the given PPF functions. Thus, defining a new design protocol only
requires defining a new _draw_samples method and redefining the __init__ method to set
the internal method attribute. By default, no _draw_samples method is defined, so the
base ExperimentalDesign class is only intended to be used to define new protocols (trying 
to sample from an ExperimentalDesign instance will return a NotImplementedError).


	
__init__(*args)

	Create a new instance of an experimental design

Creates a new instance of a design of experiments, which draws samples from the parameter
space of a complex model. It is often used to generate data for a Gaussian Process emulator
to fit the outputs of the complex model. This is a base class that does not implement the
method for sampling from the distribution; to use an experimental design in practice you
should use one of the derived classes provided or create your own.

The experimental design can be initialized in several ways depending on the arguments
provided, ranging from the simplest to the most complicated.


	Provide an integer n indicating the number of input parameters. If this is used to
create an instance, it is assumed that all parameters are unformly distributed over
the \(n\)-dimensional hypercube.


	Provide an integer n and a tuple (a, b) of length 2 containing two numeric values
(where \(a < b\)). In this case, all parameters are assumed to be uniformly distributed
over the interval \([a,b]\).


	Provide an integer n and a function that takes a single numeric input in the interval
\([0,1]\) and maps it to the parameter space. In this case, all parameters are assumed
to follow the provided Probability Point Function.


	Provide a list of tuples of length 2 containing numeric values (as above, the first number
must smaller than the second number). The design then assumes that the number of parameters
is the length of the list, and each parameter follows a uniform distribution with the bounds
given by the respective tuple in the given list.


	Provide a list of functions taking a single input (as above, each function must map the
interval \([0,1]\) to the parameter space). The number of parameters in the design is the
length of the list, and the given PPF functions define the parameter space for each input.




More concretely, if one input parameter is given, you may initilize the class in any of the
following ways:


	Parameters

	n_parameters (int) – Integer specifying the number of parameters (must be positive). The
design will sample each parameter over the interval \([0,1]\)





or


	Parameters

	bounds_list (list) – List of tuples containing two numeric values, each of which has the
smaller number first. Each parameter then takes a uniform distribution
with bounds given by each tuple.





or


	Parameters

	ppf_list (list) – List of functions or other callable, each of which accepts one argument
and maps the interval \([0,1]\) to the parameter space. Each parameter
follows the distribution given by the respective PPF function.





and if two input parameters are given:


	Parameters

	
	n_parameters (int) – Integer specifying the number of parameters (must be positive). The
design will sample each parameter over the interval \([0,1]\)


	bounds (tuple) – Tuple or other iterable containing two numeric values, where the smaller
number must come first. Each parameter then takes a uniform distribution
with bounds given by the numbers provided in the tuple.








or


	Parameters

	
	n_parameters (int) – Integer specifying the number of parameters (must be positive). The
design will sample each parameter over the interval \([0,1]\)


	ppf (function) – Function or other callable, which accepts one argument and maps the interval
\([0,1]\) to the parameter space. Each parameter follows the distribution
given by the PPF function.








The scipy.stats package provides implementations of a wide range of distributions, with
pre-defined PPF functions. See the Scipy user manual for more details. Note that in order to
get a compatible PPF function that only takes a single input, you will need to set any parameters
needed to define the distribution.

Internally, the class defines any PPF functions based on the input data and collects all of
the PPF functions in a list. The class also contains information on the method used to draw
samples from the design.

To create a usable implementation based on this class, the user must define the method
_draw_samples, which takes a positive integer input n_samples and draws n_samples
from the \([0,1]^n\) hypercube, where \(n\) is the number of parameters. The user must
also modify the method attribute of the design in order to have the __str__ method work
correctly. All other functionality should not require any changes from the base class.






	
get_method()

	Returns the method used to draw samples from the design

This method returns the method used to draw samples from the experimental design. The base
class does not implement a method, so if you try to call this on the base class the code
will raise a NotImplementedError. When deriving new designs from the base class,
the method should be set when calling the __init__ method.


	Returns

	Method used to draw samples from the design.



	Return type

	str










	
get_n_parameters()

	Returns number of parameters in the experimental design

This method returns the number of parameters in the experimental design. This is set when
initializing the object, an cannot be modified.


	Returns

	Number of parameters in the experimental design.



	Return type

	int










	
sample(n_samples)

	Draw parameter samples from the experimental design

This method implements drawing parameter samples from the experimental design. The method does
this by calling the _draw_samples method to obtain samples from the \([0,1]^n\) hypercube,
where \(n\) is the number of parameters. The sample``method then transforms these samples
drawn from the low level method to the actual parameter values using the PPF functions provided
when initilizing the object. Note that this method also checks that all parameter values are
finite; if any ``NaN values are returned, an error will be raised.

Note that by implementing the sampling in this way, modifications to the method to draw samples
using a different protocol only needs to change the _draw_samples method. This makes it
simpler to define new designs, as only a single method needs to be altered.


	Parameters

	n_samples (int) – Number of samples to be drawn from the design (must be a positive integer)



	Returns

	Samples drawn from the design parameter space as a numpy array with shape
(n_samples, n_parameters)



	Return type

	ndarray
















The MonteCarloDesign Class

Class representing a one-shot design of experiments with uncorrelated parameters using Monte
Carlo Sampling

This class provides an implementation for a class for designing experiments to sample
the parameter space of a complex model using random Monte Carlo sampling. The parameter space can
be specified in a variety of ways, but essentially the user must provide a Probability Point
Function (PPF, or inverse of the Cumulative Distribution Function) for each input parameter. Each
PPF function takes a single numeric input and maps from the interval \([0,1]\) to the desired
parameter distribution value for a given parameter, and each parameter has a separate function
describing its distribution. Note that this makes the assumption of no correlations between any of
the parameter values (a future version may implement an experimental design where there are such
parameter correlations). Once the design is initialized, a desired number of samples can be
drawn from the design, returning an array holding the desired number of samples from the
parameter space.

Internally, the class holds the set of PPFs for all of the parameter values, and samples are
drawn by calling the sample method. To draw the samples, the _draw_samples is used
to generate a series of points in the \([0,1]^n\) hypercube using random Monte Carlo sampling,
where \(n\) is the number of paramters. This set of samples from the hypercube is then mapped to
the parameter space using the given PPF functions.

This design does not attempt to uniformly sample the space, but rather just makes random draws from
the parameter distributions. For this reason, small designs using this method may not sample the
parameter space very efficiently. However, generating a large number of samples using this protocol
can be done very efficiently, as drawing a sample only requires generating a series of pseduorandom
numbers.


	
class mogp_emulator.ExperimentalDesign.MonteCarloDesign(*args)

	Class representing a one-shot design of experiments with uncorrelated parameters using Monte
Carlo Sampling

This class provides an implementation for a class for designing experiments to sample
the parameter space of a complex model using random Monte Carlo sampling. The parameter space can
be specified in a variety of ways, but essentially the user must provide a Probability Point
Function (PPF, or inverse of the Cumulative Distribution Function) for each input parameter. Each
PPF function takes a single numeric input and maps from the interval \([0,1]\) to the desired
parameter distribution value for a given parameter, and each parameter has a separate function
describing its distribution. Note that this makes the assumption of no correlations between any of
the parameter values (a future version may implement an experimental design where there are such
parameter correlations). Once the design is initialized, a desired number of samples can be
drawn from the design, returning an array holding the desired number of samples from the
parameter space.

Internally, the class holds the set of PPFs for all of the parameter values, and samples are
drawn by calling the sample method. To draw the samples, the _draw_samples is used
to generate a series of points in the \([0,1]^n\) hypercube using random Monte Carlo sampling,
where \(n\) is the number of paramters. This set of samples from the hypercube is then mapped to
the parameter space using the given PPF functions.

This design does not attempt to uniformly sample the space, but rather just makes random draws from
the parameter distributions. For this reason, small designs using this method may not sample the
parameter space very efficiently. However, generating a large number of samples using this protocol
can be done very efficiently, as drawing a sample only requires generating a series of pseduorandom
numbers.


	
__init__(*args)

	Create a new instance of a Monte Carlo experimental design

Creates a new instance of a Monte Carlo design of experiments, which draws samples randomly 
from the parameter space of a complex model. It can be used to generate data for a Gaussian
Process emulator to fit the outputs of the complex model. Because the samples are drawn
randomly, small designs may not sample the space very well, but the samples can be drawn
quickly as they are entirely random.

The experimental design can be initialized in several ways depending on the arguments
provided, ranging from the simplest to the most complicated.


	Provide an integer n indicating the number of input parameters. If this is used to
create an instance, it is assumed that all parameters are unformly distributed over
the \(n\)-dimensional hypercube.


	Provide an integer n and a tuple (a, b) of length 2 containing two numeric values
(where \(a < b\)). In this case, all parameters are assumed to be uniformly distributed
over the interval \([a,b]\).


	Provide an integer n and a function that takes a single numeric input in the interval
\([0,1]\) and maps it to the parameter space. In this case, all parameters are assumed
to follow the provided Probability Point Function.


	Provide a list of tuples of length 2 containing numeric values (as above, the first number
must smaller than the second number). The design then assumes that the number of parameters
is the length of the list, and each parameter follows a uniform distribution with the bounds
given by the respective tuple in the given list.


	Provide a list of functions taking a single input (as above, each function must map the
interval \([0,1]\) to the parameter space). The number of parameters in the design is the
length of the list, and the given PPF functions define the parameter space for each input.




More concretely, if one input parameter is given, you may initilize the class in any of the
following ways:


	Parameters

	n_parameters (int) – Integer specifying the number of parameters (must be positive). The
design will sample each parameter over the interval \([0,1]\)





or


	Parameters

	bounds_list (list) – List of tuples containing two numeric values, each of which has the
smaller number first. Each parameter then takes a uniform distribution
with bounds given by each tuple.





or


	Parameters

	ppf_list (list) – List of functions or other callable, each of which accepts one argument
and maps the interval \([0,1]\) to the parameter space. Each parameter
follows the distribution given by the respective PPF function.





and if two input parameters are given:


	Parameters

	
	n_parameters (int) – Integer specifying the number of parameters (must be positive). The
design will sample each parameter over the interval \([0,1]\)


	bounds (tuple) – Tuple or other iterable containing two numeric values, where the smaller
number must come first. Each parameter then takes a uniform distribution
with bounds given by the numbers provided in the tuple.








or


	Parameters

	
	n_parameters (int) – Integer specifying the number of parameters (must be positive). The
design will sample each parameter over the interval \([0,1]\)


	ppf (function) – Function or other callable, which accepts one argument and maps the interval
\([0,1]\) to the parameter space. Each parameter follows the distribution
given by the PPF function.








The scipy.stats package provides implementations of a wide range of distributions, with
pre-defined PPF functions. See the Scipy user manual for more details. Note that in order to
get a compatible PPF function that only takes a single input, you will need to set any parameters
needed to define the distribution.

Internally, the class defines any PPF functions based on the input data and collects all of
the PPF functions in a list. The class also contains information on the method used to draw
samples from the design.






	
get_method()

	Returns the method used to draw samples from the design

This method returns the method used to draw samples from the experimental design. The base
class does not implement a method, so if you try to call this on the base class the code
will raise a NotImplementedError. When deriving new designs from the base class,
the method should be set when calling the __init__ method.


	Returns

	Method used to draw samples from the design.



	Return type

	str










	
get_n_parameters()

	Returns number of parameters in the experimental design

This method returns the number of parameters in the experimental design. This is set when
initializing the object, an cannot be modified.


	Returns

	Number of parameters in the experimental design.



	Return type

	int










	
sample(n_samples)

	Draw parameter samples from the experimental design

This method implements drawing parameter samples from the experimental design. The method does
this by calling the _draw_samples method to obtain samples from the \([0,1]^n\) hypercube,
where \(n\) is the number of parameters. The sample``method then transforms these samples
drawn from the low level method to the actual parameter values using the PPF functions provided
when initilizing the object. Note that this method also checks that all parameter values are
finite; if any ``NaN values are returned, an error will be raised.

Note that by implementing the sampling in this way, modifications to the method to draw samples
using a different protocol only needs to change the _draw_samples method. This makes it
simpler to define new designs, as only a single method needs to be altered.


	Parameters

	n_samples (int) – Number of samples to be drawn from the design (must be a positive integer)



	Returns

	Samples drawn from the design parameter space as a numpy array with shape
(n_samples, n_parameters)



	Return type

	ndarray
















The LatinHypercubeDesign Class

Class representing a one-shot design of experiments with uncorrelated parameters using Latin
Hypercube Sampling

This class provides an implementation for a class for designing experiments to sample
the parameter space of a complex model using Latin Hypercube sampling. The parameter space can
be specified in a variety of ways, but essentially the user must provide a Probability Point
Function (PPF, or inverse of the Cumulative Distribution Function) for each input parameter. Each
PPF function takes a single numeric input and maps from the interval \([0,1]\) to the desired
parameter distribution value for a given parameter, and each parameter has a separate function
describing its distribution. Note that this makes the assumption of no correlations between any of
the parameter values (a future version may implement an experimental design where there are such
parameter correlations). Once the design is initialized, a desired number of samples can be
drawn from the design, returning an array holding the desired number of samples from the
parameter space.

Internally, the class holds the set of PPFs for all of the parameter values, and samples are
drawn by calling the sample method. To draw the samples, the _draw_samples is used
to generate a series of points in the \([0,1]^n\) hypercube using Latin Hypercube sampling,
where \(n\) is the number of paramters. This set of samples from the Latin Hypercube is then
mapped to the parameter space using the given PPF functions.

Unlike Monte Carlo sampling, Latin Hypercube designs attempt to sample more uniformly from the
parameter space. Latin Hypercube sampling ensures that each sample is drawn from a different
part of the space for each parameter. For example, if four samples are drawn, then for each
parameter, one sample is guaranteed to be drawn from each quartile of the distribution. This
ensures a more uniform sampling when compared on Monte Carlo sampling, but requires slightly
more computation to generate the samples. Note however, that for very large numbers of parameters,
Latin Hypercubes still may not sample very efficiently. This is due to the fact that the size of
the parameter space grows exponentially with the number of dimensions, so a fixed number of
samples will sample the space more poorly as the number of parameters increases.


	
class mogp_emulator.ExperimentalDesign.LatinHypercubeDesign(*args)

	Class representing a one-shot design of experiments with uncorrelated parameters using Latin
Hypercube Sampling

This class provides an implementation for a class for designing experiments to sample
the parameter space of a complex model using Latin Hypercube sampling. The parameter space can
be specified in a variety of ways, but essentially the user must provide a Probability Point
Function (PPF, or inverse of the Cumulative Distribution Function) for each input parameter. Each
PPF function takes a single numeric input and maps from the interval \([0,1]\) to the desired
parameter distribution value for a given parameter, and each parameter has a separate function
describing its distribution. Note that this makes the assumption of no correlations between any of
the parameter values (a future version may implement an experimental design where there are such
parameter correlations). Once the design is initialized, a desired number of samples can be
drawn from the design, returning an array holding the desired number of samples from the
parameter space.

Internally, the class holds the set of PPFs for all of the parameter values, and samples are
drawn by calling the sample method. To draw the samples, the _draw_samples is used
to generate a series of points in the \([0,1]^n\) hypercube using Latin Hypercube sampling,
where \(n\) is the number of paramters. This set of samples from the Latin Hypercube is then
mapped to the parameter space using the given PPF functions.

Unlike Monte Carlo sampling, Latin Hypercube designs attempt to sample more uniformly from the
parameter space. Latin Hypercube sampling ensures that each sample is drawn from a different
part of the space for each parameter. For example, if four samples are drawn, then for each
parameter, one sample is guaranteed to be drawn from each quartile of the distribution. This
ensures a more uniform sampling when compared on Monte Carlo sampling, but requires slightly
more computation to generate the samples. Note however, that for very large numbers of parameters,
Latin Hypercubes still may not sample very efficiently. This is due to the fact that the size of
the parameter space grows exponentially with the number of dimensions, so a fixed number of
samples will sample the space more poorly as the number of parameters increases.


	
__init__(*args)

	Create a new instance of a Latin Hypercube experimental design

Creates a new instance of a Latin Hypercube design of experiments, which draws samples 
from the parameter space of a complex model in a more uniform fashion when compared to
random Monte Carlo sampling. It can be used to generate data for a Gaussian
Process emulator to fit the outputs of the complex model. Because the samples are drawn
more uniformly than in Monte Carlo sampling, these designs may perform better in high
dimensional parameter spaces.

The experimental design can be initialized in several ways depending on the arguments
provided, ranging from the simplest to the most complicated.


	Provide an integer n indicating the number of input parameters. If this is used to
create an instance, it is assumed that all parameters are unformly distributed over
the \(n\)-dimensional hypercube.


	Provide an integer n and a tuple (a, b) of length 2 containing two numeric values
(where \(a < b\)). In this case, all parameters are assumed to be uniformly distributed
over the interval \([a,b]\).


	Provide an integer n and a function that takes a single numeric input in the interval
\([0,1]\) and maps it to the parameter space. In this case, all parameters are assumed
to follow the provided Probability Point Function.


	Provide a list of tuples of length 2 containing numeric values (as above, the first number
must smaller than the second number). The design then assumes that the number of parameters
is the length of the list, and each parameter follows a uniform distribution with the bounds
given by the respective tuple in the given list.


	Provide a list of functions taking a single input (as above, each function must map the
interval \([0,1]\) to the parameter space). The number of parameters in the design is the
length of the list, and the given PPF functions define the parameter space for each input.




More concretely, if one input parameter is given, you may initilize the class in any of the
following ways:


	Parameters

	n_parameters (int) – Integer specifying the number of parameters (must be positive). The
design will sample each parameter over the interval \([0,1]\)





or


	Parameters

	bounds_list (list) – List of tuples containing two numeric values, each of which has the
smaller number first. Each parameter then takes a uniform distribution
with bounds given by each tuple.





or


	Parameters

	ppf_list (list) – List of functions or other callable, each of which accepts one argument
and maps the interval \([0,1]\) to the parameter space. Each parameter
follows the distribution given by the respective PPF function.





and if two input parameters are given:


	Parameters

	
	n_parameters (int) – Integer specifying the number of parameters (must be positive). The
design will sample each parameter over the interval \([0,1]\)


	bounds (tuple) – Tuple or other iterable containing two numeric values, where the smaller
number must come first. Each parameter then takes a uniform distribution
with bounds given by the numbers provided in the tuple.








or


	Parameters

	
	n_parameters (int) – Integer specifying the number of parameters (must be positive). The
design will sample each parameter over the interval \([0,1]\)


	ppf (function) – Function or other callable, which accepts one argument and maps the interval
\([0,1]\) to the parameter space. Each parameter follows the distribution
given by the PPF function.








The scipy.stats package provides implementations of a wide range of distributions, with
pre-defined PPF functions. See the Scipy user manual for more details. Note that in order to
get a compatible PPF function that only takes a single input, you will need to set any parameters
needed to define the distribution.

Internally, the class defines any PPF functions based on the input data and collects all of
the PPF functions in a list. The class also contains information on the method used to draw
samples from the design.






	
get_method()

	Returns the method used to draw samples from the design

This method returns the method used to draw samples from the experimental design. The base
class does not implement a method, so if you try to call this on the base class the code
will raise a NotImplementedError. When deriving new designs from the base class,
the method should be set when calling the __init__ method.


	Returns

	Method used to draw samples from the design.



	Return type

	str










	
get_n_parameters()

	Returns number of parameters in the experimental design

This method returns the number of parameters in the experimental design. This is set when
initializing the object, an cannot be modified.


	Returns

	Number of parameters in the experimental design.



	Return type

	int










	
sample(n_samples)

	Draw parameter samples from the experimental design

This method implements drawing parameter samples from the experimental design. The method does
this by calling the _draw_samples method to obtain samples from the \([0,1]^n\) hypercube,
where \(n\) is the number of parameters. The sample``method then transforms these samples
drawn from the low level method to the actual parameter values using the PPF functions provided
when initilizing the object. Note that this method also checks that all parameter values are
finite; if any ``NaN values are returned, an error will be raised.

Note that by implementing the sampling in this way, modifications to the method to draw samples
using a different protocol only needs to change the _draw_samples method. This makes it
simpler to define new designs, as only a single method needs to be altered.


	Parameters

	n_samples (int) – Number of samples to be drawn from the design (must be a positive integer)



	Returns

	Samples drawn from the design parameter space as a numpy array with shape
(n_samples, n_parameters)



	Return type

	ndarray

















          

      

      

    

  

    
      
          
            
  
The SequentialDesign Class

Base class representing a sequential experimental design

This class provides the base implementation of a class for designing experiments sequentially. This
means that rather than picking all simulation points in a single step, the points are selected one
by one, taking into account the information obtained by determining the true parameter value at each
design point when selecting the next one. Sequential designs can be very useful when running expensive,
high-dimensional simulations to ensure that a limited computational budget is used effectvely.

Instead of choosing all points at once, which is the case in a one-shot design, a sequential design
does some additional computation work at each step to more carefully choose the next point. This means
that sequential designs are better suited for very expensive simulations, where the additional
cost of choosing the next point is small compared to the overall computational cost of running
the simulations.

A sequential design is built on top of a base design (which must be a subclass of the
ExperimentalDesign class. In addition to the base design, the class must contain information on
how many points are used in the initial design (i.e. the number of starting points used before starting
the sequential steps in the design) and the number of candidate points that are considered during each
iteration. Optionally, a function for evaluating the actual simulation can be optionally bound to the
class instance, which allows the entire design process to be automated. If such a function is not
provided, then the steps to run the design must be carried out manually, with the evaluated
simulation values provided to the class at the end of each simulation in order to determine the
next point.

To use the base class to create an experimental design, a new subclass must be created that provides
a method _eval_metric, which considers all candidate points and returns the index of the best
candidate. Otherwise, all other code provided here allows for a generic sequential design to be
easily run and managed.


	
class mogp_emulator.SequentialDesign.SequentialDesign(base_design, f=None, n_samples=None, n_init=10, n_cand=50)

	Base class representing a sequential experimental design

This class provides the base implementation of a class for designing experiments sequentially. This
means that rather than picking all simulation points in a single step, the points are selected one
by one, taking into account the information obtained by determining the true parameter value at each
design point when selecting the next one. Sequential designs can be very useful when running expensive,
high-dimensional simulations to ensure that a limited computational budget is used effectvely.

Instead of choosing all points at once, which is the case in a one-shot design, a sequential design
does some additional computation work at each step to more carefully choose the next point. This means
that sequential designs are better suited for very expensive simulations, where the additional
cost of choosing the next point is small compared to the overall computational cost of running
the simulations.

A sequential design is built on top of a base design (which must be a subclass of the
ExperimentalDesign class. In addition to the base design, the class must contain information on
how many points are used in the initial design (i.e. the number of starting points used before starting
the sequential steps in the design) and the number of candidate points that are considered during each
iteration. Optionally, a function for evaluating the actual simulation can be optionally bound to the
class instance, which allows the entire design process to be automated. If such a function is not
provided, then the steps to run the design must be carried out manually, with the evaluated
simulation values provided to the class at the end of each simulation in order to determine the
next point.

To use the base class to create an experimental design, a new subclass must be created that provides
a method _eval_metric, which considers all candidate points and returns the index of the best
candidate. Otherwise, all other code provided here allows for a generic sequential design to be
easily run and managed.


	
__init__(base_design, f=None, n_samples=None, n_init=10, n_cand=50)

	Create a new instance of a sequential experimental design

Creates a new instance of a sequential experimental design, which sequentially chooses
points to be evaluated from a complex simulation function. It is often used for
expensive computational models, where the cost of running a single evaluation is
large and must be done in series due to computational limitations, and thus some
additional computation done at each step to select new points is small compared
to the overall cost of running a single simulation.

Sequential designs require specifying a base design using a subclass of ExperimentalDesign
as well as information on the number of points to use in each step in the design
process. Additionally, the function to evaluated can be bound to the class to allow
automatic evaluation of the function at each step.


	Parameters

	
	base_design (ExperimentalDesign) – Base one-shot experimental design (must be a subclass of
ExperimentalDesign). This contains the information on the
parameter space to be sampled.


	f (function or other callable) – Function to be evaluated for the design. Must take all parameter values as a single
input array and return a single float or an array of length 1


	n_samples (int or None) – Number of sequential design points to be drawn. If specified, this must be
a non-negative integer. Note that this is in addition to the number of initial
points, meaning that the total design size will be n_samples + n_init. 
This can also be specified when running the full design. This parameter is
optional, and defaults to None (meaning the number of samples is set when
running the design, or that samples will be added manually).


	n_init (int) – Number of points in the inital design before the sequential steps begin. Must
be a positive integer. Optional, default value is 10.


	n_cand – Number of candidates to consider at each sequential design step. Must be a positive
integer. Optional, default value is 50.













	
generate_initial_design()

	Create initial design

Method to set the initial design inputs. Generates the desired number of points for the initial
design by drawing from the base design. Method sets the inputs attribute of the
SequentialDesign instance, but also returns the initial design as a numpy array if the
simulations are to be run manually. This method can be run repeatedly to draw different
initial designs if the initial target values have not been set, but once the targets have been
set the method will not overwrite them to prevent corruption of the design.


	Returns

	Initial design points, a 2D numpy array with shape (n_init, n_parameters)



	Return type

	ndarray










	
get_base_design()

	Get type of base design

Returns the type of the base design. The base design must be a subclass of ExperimentalDesign,
but any one-shot design method can be used to generate the initial design and the candidates.


	Returns

	Base design type as a string



	Return type

	str










	
get_batch_points(n_points)

	Batch version of get_next_point for a Sequential Design

This method returns a batch of design points to run from a Sequential Design. This is
useful if simulations can be run in parallel, which speeds up the ability to
generate designs efficiently. The method simply calls get_next_point the
required number of times, but rather than using the true value of the simulation
it instead substitutes the predicted value that is method-specific. This can be
implemented in a subclass by defining the method _estimate_next_target.


	Parameters

	n_points (int) – Size of batch to generate for the next set of simulation points.
This parameter determines the shape of the output array. Must
be a positive integer.



	Returns

	Set of batch points chosen using the batch version of the design
as a numpy array with shape (n_points, n_parameters)



	Return type

	ndarray










	
get_candidates()

	Get current candidate design input points

Returns a numpy array holding the current candidate design points. The array is 2D and
has shape (n_cand, n_parameters). It always has the same size once it is initialized,
but the values will change acros iterations as new candidate points are considered at
each iteration.


	Returns

	Current value of the candidate design inputs



	Return type

	ndarray










	
get_current_iteration()

	Get number of current iteration in the experimental design

Returns the current iteration during the sequential design process. This is mostly useful
if the sequential design is being updated manually to know the current iteration.


	Returns

	Current iteration number



	Return type

	int










	
get_inputs()

	Get current design input points

Returns a numpy array holding the current design points. The array is 2D and has shape
(current_iteration, n_parameters) (i.e. it is resized after each iteration when a new
design point is chosen).


	Returns

	Current value of the design inputs



	Return type

	ndarray










	
get_n_cand()

	Get number of candidate design points

Returns the number of candidate design points used in each sequential design step. Candidates
are re-drawn at each step, so this number of points will be drawn each time and all points
will be considered at each iteration.


	Returns

	Number of candidate design points



	Return type

	int










	
get_n_init()

	Get number of initial design points

Returns the number of initial design points used before beginning the sequential design
steps. Note that this means that the total number of samples to be drawn for the design
is n_init + n_samples.


	Returns

	Number of initial design points



	Return type

	int










	
get_n_parameters()

	Get number of parameters in design

Returns the number of parameters in the design (note that this is specified in the base
design that must be provided when initializing the class instance).


	Returns

	Number of parameters in the design



	Return type

	int










	
get_n_samples()

	Get number of sequential design points

Returns the number of sequential design points used in the sequential design steps. This
parameter can be None to indicate that the number of samples will be specified when
running the design, or that the samples will be updated manually. Note that the total number
of samples to be drawn for the design is n_init + n_samples.


	Returns

	Number of sequential design points



	Return type

	int










	
get_next_point()

	Evaluate candidates to determine next point

Public method for determining the next point in the design. Internally, it checks that the inputs
and target arrays are as expected for correctly drawing a new point, generates prospective candidates,
and then evaluates them using the desired metric in order to select the best one. It updates the
inputs array and returns the next point to be evaluated as a 1D numpy array of length
n_parameters.


	Returns

	Next design point, a 1D numpy array of length n_parameters



	Return type

	ndarray










	
get_targets()

	Get current design target points

Returns a numpy array holding the current target points. The array is 1D and has shape
(current_iteration,) (i.e. it is resized after each iteration when a new target point
is added). Note that simulation outputs must be a single number, so if considering a
simulation has multiple outputs, the user must decide how to combine them to form the
relevant target value for deciding which point to simulate next.


	Returns

	Current value of the target inputs



	Return type

	ndarray










	
has_function()

	Determines if class contains a function for running the simulator

This method checks to see if a function has been provided for running the simulation.


	Returns

	Whether or not the design has a bound function for evaluting the simulation.



	Return type

	bool










	
load_design(filename)

	Load previously saved sequential design

Loads a previously saved sequential design from file. Loads the arrays for
inputs, targets, and candidates from file and sets other internal
data to be consistent. It performs a few checks for consistency to ensure
that the loaded design is compatible with the selected parameters, however,
it does not completely check everything for consistency (in particular, it does
not make any attempt to ensure that the exact base design or function are
identical to what was previously used). It is up to the user to ensure that
these are consistent with the previous instance of the design.


	Parameters

	filename (str or file) – Filename or file object from which the design will be loaded



	Returns

	None










	
run_initial_design()

	Run initial design

Method to run the initial design by generating the initial design, evaluating the function on
all design points, and setting the target values. Note that this requires having a bound function
to the class in order to evaluate the design points internally. It is a shortcut to running
generate_initial_design, evaluating the initial design points, and then using
set_initial_targets to set the target values, with some additional checks along the way.

If the initial design has already been fully run, this method will raise an error as the
method to generate the initial design checks this prior to overwriting the initial targets.
Note also that this method checks that the outputs of the bound function match up with
the expected array sizes and that all outputs are finite before updating the initial targets.


	Returns

	None



	Return type

	None










	
run_next_point()

	Perform one iteration of the sequential design process

Method for performing an iteration of the sequential design process. This is a shortcut for
generating and evaluating the candidates to find the best next design point, evaluating
the function on the next point, and then updating the targets array with the value.
This requires a function be bound to the class instance to automatically run the
simulation. This will also automatically update the current_iteration attribute,
which can be used to determine the number of sequential design steps that have been run.


	Returns

	None



	Return type

	None










	
run_sequential_design(n_samples=None)

	Run the entire sequential design

Method to run all steps of the sequential design process. Note that the class instance must
have a bound function for evaluating the design points to run all steps automatically. If
such a method is not provided, the design steps must be run manually.

The desired number of samples to be drawn can either be specified when initializing the
class instance or when calling this method. If a number of samples is provided on
both occasions, then the number provided when calling run_sequential_design is used.

Internally, this method is a wrapper to run_initial_design and then calling
run_next_point a total of n_samples times. Note that this means that the total
number of design points is n_init + n_samples.


	Parameters

	n_samples (int or None) – Number of sequential design steps to be run. Optional if the number was
specified upon initialization. Default is None (default to number
set when initializing). If numbers are provided on both occasions, the
number set here is used. If a number is provided, must be non-negative.



	Returns

	None



	Return type

	None










	
save_design(filename)

	Save current state of the sequential design

Saves the current state of the sequential design by writing the current
values of inputs, targets, and candidates to file as a .npz
file. To re-load a saved design, use the load_design method.

Note that this method only dumps the arrays holding the inputs, targets, and
candidates to a .npz file. It does not ensure that the function or base
design are consistent, so it is up to the user to ensure that the new design
parameters are the same as the parameters for the old one.


	Parameters

	filename (str or file) – Filename or file object where design will be saved



	Returns

	None










	
set_batch_targets(new_targets)

	Batch version of set_next_target for a Sequential Design

This method updates the targets array for a batch set of simulations. The input
array must have shape (n_points,), where n_points is the number of points
selected when calling get_batch_points. Disagreement between these two values
will result in an error.


	Parameters

	new_targets (ndarray) – Array holding results from the simulations. Must be an array
of shape (n_points,), where n_points is set when
calling get_batch_points



	Returns

	None










	
set_initial_targets(targets)

	Set initial design target values

Method to set the initial design targets. Generates the desired number of points for the initial
design by drawing from the base design. Method sets the inputs attribute of the
SequentialDesign instance, but also returns the initial design as a numpy array if the
simulations are to be run manually. This method can be run repeatedly to draw different
initial designs if the initial target values have not been set, but once the targets have been
set the method will not overwrite them to prevent corruption of the design.

Target values must be an array with length (n_init,), with values obtained by running
the initial design through the simulation. Note that this means the initial design must
be created prior to running this method – if this method is called prior to
generate_initial_design, the code will raise an error.


	Parameters

	targets (ndarray) – Initial value of targets, must be a 1D numpy array with shape (n_init,)



	Returns

	None



	Return type

	None










	
set_next_target(target)

	Set value of next target

Updates the target array with the correct value (from running the actual simulation) of the
latest design point determined using get_next_point. The target input must be a float
or an array of length 1. The code internally checks the inputs and targets for any problems
that may have occurred in updating them correctly, and if all is well then updates the
target array and increments the number of iterations. If the design has not been
correctly initialized, or get_next_point has not been previously run, this method
will raise an error.


	Parameters

	target (float or length 1 array) – New target value found from evaluating the simulation on the latest design
point found from the get_next_point method.



	Returns

	None



	Return type

	None
















The MICEDesign Class

Class representing a Mutual Information for Computer Experiments (MICE) sequential
experimental design

This class provides an implementation of the MICE algorithm, which uses Mutual Information
as the criterion for selecting new points in a sequential design. The idea in MICE is to
select design points based on the point that provides the most information on the function
values in the entire design space. This is a straightforward application of a sequential
design procedure, though the class requires a few additional parameters in order to
compute the MICE criteria.

These additional parameters are nugget parameters provided to the Gaussian Process fit to
smooth the predictions when evaluating the Mutual Information criteria. Essentially, since
experimental design often requires sampling from a high dimensional space, this cannot be
done in a way that guarantees that all candidate points are equally spaced. The Mutual
Information criterion is sensitive to how these candidate points are distributed in space,
so the nugget parameter provides some smoothing that makes the criterion less dependent on
the distribution of the candidate points. Typical values of the smoothing nugget parameters
(nugget_s in this implementation) are 1, though this may depend on the application.

Other than the smoothing parameters, the implementation follows the base procedure for a
sequential design. The implementation adds methods for querying the nugget parameters
and an additional helper function for computing the Mutual Information criterion, but
other methods are identical.


	
class mogp_emulator.SequentialDesign.MICEDesign(base_design, f=None, n_samples=None, n_init=10, n_cand=50, nugget=None, nugget_s=1.0)

	Class representing a Mutual Information for Computer Experiments (MICE) sequential
experimental design

This class provides an implementation of the MICE algorithm, which uses Mutual Information
as the criterion for selecting new points in a sequential design. The idea in MICE is to
select design points based on the point that provides the most information on the function
values in the entire design space. This is a straightforward application of a sequential
design procedure, though the class requires a few additional parameters in order to
compute the MICE criteria.

These additional parameters are nugget parameters provided to the Gaussian Process fit to
smooth the predictions when evaluating the Mutual Information criteria. Essentially, since
experimental design often requires sampling from a high dimensional space, this cannot be
done in a way that guarantees that all candidate points are equally spaced. The Mutual
Information criterion is sensitive to how these candidate points are distributed in space,
so the nugget parameter provides some smoothing that makes the criterion less dependent on
the distribution of the candidate points. Typical values of the smoothing nugget parameters
(nugget_s in this implementation) are 1, though this may depend on the application.

Other than the smoothing parameters, the implementation follows the base procedure for a
sequential design. The implementation adds methods for querying the nugget parameters
and an additional helper function for computing the Mutual Information criterion, but
other methods are identical.


	
__init__(base_design, f=None, n_samples=None, n_init=10, n_cand=50, nugget=None, nugget_s=1.0)

	Create new instance of a MICE sequential design

Method to initialize a new MICE design. Parameters are largely the same as for the base
SequentialDesign class, with a few additional nugget parameters for computing the
Mutual Information criterion. A base design must be provided (must be a subclass of the
ExperimentalDesign class), plus optionally a function to be evaluated in the design.
Additional parameters include the number of samples, the number of initial design points,
the number of candidate points, the nugget parameter for the base GP, and the smoothing
nugget parameter for smoothing the uncertainty predictions on the candidate design points.
Note that the total number of design points is n_init + n_samples.


	Parameters

	
	base_design (ExperimentalDesign) – Base one-shot experimental design (must be a subclass of
ExperimentalDesign). This contains the information on the
parameter space to be sampled.


	f (function or other callable) – Function to be evaluated for the design. Must take all parameter values as a single
input array and return a single float or an array of length 1


	n_samples (int or None) – Number of sequential design points to be drawn. If specified, this must be
a positive integer. Note that this is in addition to the number of initial
points, meaning that the total design size will be n_samples + n_init. 
This can also be specified when running the full design. This parameter is
optional, and defaults to None (meaning the number of samples is set when
running the design, or that samples will be added manually).


	n_init (int) – Number of points in the inital design before the sequential steps begin. Must
be a positive integer. Optional, default value is 10.


	n_cand – Number of candidates to consider at each sequential design step. Must be a positive
integer. Optional, default value is 50.


	nugget (float or None) – Nugget parameter for base GP predictions. Must be a non-negative float or None,
where None indicates that the nugget parameter is selected adaptively. Optional,
default value is None.


	nugget_s (float) – Smoothing nugget parameter for smoothing the predictions on the candidate space.
Must be a non-negative float. Default value is 1.













	
generate_initial_design()

	Create initial design

Method to set the initial design inputs. Generates the desired number of points for the initial
design by drawing from the base design. Method sets the inputs attribute of the
SequentialDesign instance, but also returns the initial design as a numpy array if the
simulations are to be run manually. This method can be run repeatedly to draw different
initial designs if the initial target values have not been set, but once the targets have been
set the method will not overwrite them to prevent corruption of the design.


	Returns

	Initial design points, a 2D numpy array with shape (n_init, n_parameters)



	Return type

	ndarray










	
get_base_design()

	Get type of base design

Returns the type of the base design. The base design must be a subclass of ExperimentalDesign,
but any one-shot design method can be used to generate the initial design and the candidates.


	Returns

	Base design type as a string



	Return type

	str










	
get_batch_points(n_points)

	Batch version of get_next_point for a Sequential Design

This method returns a batch of design points to run from a Sequential Design. This is
useful if simulations can be run in parallel, which speeds up the ability to
generate designs efficiently. The method simply calls get_next_point the
required number of times, but rather than using the true value of the simulation
it instead substitutes the predicted value that is method-specific. This can be
implemented in a subclass by defining the method _estimate_next_target.


	Parameters

	n_points (int) – Size of batch to generate for the next set of simulation points.
This parameter determines the shape of the output array. Must
be a positive integer.



	Returns

	Set of batch points chosen using the batch version of the design
as a numpy array with shape (n_points, n_parameters)



	Return type

	ndarray










	
get_candidates()

	Get current candidate design input points

Returns a numpy array holding the current candidate design points. The array is 2D and
has shape (n_cand, n_parameters). It always has the same size once it is initialized,
but the values will change acros iterations as new candidate points are considered at
each iteration.


	Returns

	Current value of the candidate design inputs



	Return type

	ndarray










	
get_current_iteration()

	Get number of current iteration in the experimental design

Returns the current iteration during the sequential design process. This is mostly useful
if the sequential design is being updated manually to know the current iteration.


	Returns

	Current iteration number



	Return type

	int










	
get_inputs()

	Get current design input points

Returns a numpy array holding the current design points. The array is 2D and has shape
(current_iteration, n_parameters) (i.e. it is resized after each iteration when a new
design point is chosen).


	Returns

	Current value of the design inputs



	Return type

	ndarray










	
get_n_cand()

	Get number of candidate design points

Returns the number of candidate design points used in each sequential design step. Candidates
are re-drawn at each step, so this number of points will be drawn each time and all points
will be considered at each iteration.


	Returns

	Number of candidate design points



	Return type

	int










	
get_n_init()

	Get number of initial design points

Returns the number of initial design points used before beginning the sequential design
steps. Note that this means that the total number of samples to be drawn for the design
is n_init + n_samples.


	Returns

	Number of initial design points



	Return type

	int










	
get_n_parameters()

	Get number of parameters in design

Returns the number of parameters in the design (note that this is specified in the base
design that must be provided when initializing the class instance).


	Returns

	Number of parameters in the design



	Return type

	int










	
get_n_samples()

	Get number of sequential design points

Returns the number of sequential design points used in the sequential design steps. This
parameter can be None to indicate that the number of samples will be specified when
running the design, or that the samples will be updated manually. Note that the total number
of samples to be drawn for the design is n_init + n_samples.


	Returns

	Number of sequential design points



	Return type

	int










	
get_next_point()

	Evaluate candidates to determine next point

Public method for determining the next point in the design. Internally, it checks that the inputs
and target arrays are as expected for correctly drawing a new point, generates prospective candidates,
and then evaluates them using the desired metric in order to select the best one. It updates the
inputs array and returns the next point to be evaluated as a 1D numpy array of length
n_parameters.


	Returns

	Next design point, a 1D numpy array of length n_parameters



	Return type

	ndarray










	
get_nugget()

	Get value of nugget parameter for base GP

Returns the nugget value for the base GP (used to actually fit the inputs to targets).
Can be a float or None (meaning fitting will adaptively add noise to stabilize matrix
inversion as needed).


	Returns

	Nugget parameter, can be a float or None for adaptive noise addition.



	Return type

	float or None










	
get_nugget_s()

	Get value of smoothing nugget parameter

Returns the value of the smoothing nugget parameter for the GP used to evaluate the mutual
information criterion. This GP examines the correlation between a candidate design point and
the other candidate points, which requires smoothing to ensure that the correlation measure is
not biased by the distribution of the candidate points in space. This parameter must be a
nonnegative float (typical values used are 1, though this may depend on the application).


	Returns

	Nugget parameter for smoothing predictions from candidate points made on a candidate 
point. Typical values are 1.



	Return type

	float










	
get_targets()

	Get current design target points

Returns a numpy array holding the current target points. The array is 1D and has shape
(current_iteration,) (i.e. it is resized after each iteration when a new target point
is added). Note that simulation outputs must be a single number, so if considering a
simulation has multiple outputs, the user must decide how to combine them to form the
relevant target value for deciding which point to simulate next.


	Returns

	Current value of the target inputs



	Return type

	ndarray










	
has_function()

	Determines if class contains a function for running the simulator

This method checks to see if a function has been provided for running the simulation.


	Returns

	Whether or not the design has a bound function for evaluting the simulation.



	Return type

	bool










	
load_design(filename)

	Load previously saved sequential design

Loads a previously saved sequential design from file. Loads the arrays for
inputs, targets, and candidates from file and sets other internal
data to be consistent. It performs a few checks for consistency to ensure
that the loaded design is compatible with the selected parameters, however,
it does not completely check everything for consistency (in particular, it does
not make any attempt to ensure that the exact base design or function are
identical to what was previously used). It is up to the user to ensure that
these are consistent with the previous instance of the design.


	Parameters

	filename (str or file) – Filename or file object from which the design will be loaded



	Returns

	None










	
run_initial_design()

	Run initial design

Method to run the initial design by generating the initial design, evaluating the function on
all design points, and setting the target values. Note that this requires having a bound function
to the class in order to evaluate the design points internally. It is a shortcut to running
generate_initial_design, evaluating the initial design points, and then using
set_initial_targets to set the target values, with some additional checks along the way.

If the initial design has already been fully run, this method will raise an error as the
method to generate the initial design checks this prior to overwriting the initial targets.
Note also that this method checks that the outputs of the bound function match up with
the expected array sizes and that all outputs are finite before updating the initial targets.


	Returns

	None



	Return type

	None










	
run_next_point()

	Perform one iteration of the sequential design process

Method for performing an iteration of the sequential design process. This is a shortcut for
generating and evaluating the candidates to find the best next design point, evaluating
the function on the next point, and then updating the targets array with the value.
This requires a function be bound to the class instance to automatically run the
simulation. This will also automatically update the current_iteration attribute,
which can be used to determine the number of sequential design steps that have been run.


	Returns

	None



	Return type

	None










	
run_sequential_design(n_samples=None)

	Run the entire sequential design

Method to run all steps of the sequential design process. Note that the class instance must
have a bound function for evaluating the design points to run all steps automatically. If
such a method is not provided, the design steps must be run manually.

The desired number of samples to be drawn can either be specified when initializing the
class instance or when calling this method. If a number of samples is provided on
both occasions, then the number provided when calling run_sequential_design is used.

Internally, this method is a wrapper to run_initial_design and then calling
run_next_point a total of n_samples times. Note that this means that the total
number of design points is n_init + n_samples.


	Parameters

	n_samples (int or None) – Number of sequential design steps to be run. Optional if the number was
specified upon initialization. Default is None (default to number
set when initializing). If numbers are provided on both occasions, the
number set here is used. If a number is provided, must be non-negative.



	Returns

	None



	Return type

	None










	
save_design(filename)

	Save current state of the sequential design

Saves the current state of the sequential design by writing the current
values of inputs, targets, and candidates to file as a .npz
file. To re-load a saved design, use the load_design method.

Note that this method only dumps the arrays holding the inputs, targets, and
candidates to a .npz file. It does not ensure that the function or base
design are consistent, so it is up to the user to ensure that the new design
parameters are the same as the parameters for the old one.


	Parameters

	filename (str or file) – Filename or file object where design will be saved



	Returns

	None










	
set_batch_targets(new_targets)

	Batch version of set_next_target for a Sequential Design

This method updates the targets array for a batch set of simulations. The input
array must have shape (n_points,), where n_points is the number of points
selected when calling get_batch_points. Disagreement between these two values
will result in an error.


	Parameters

	new_targets (ndarray) – Array holding results from the simulations. Must be an array
of shape (n_points,), where n_points is set when
calling get_batch_points



	Returns

	None










	
set_initial_targets(targets)

	Set initial design target values

Method to set the initial design targets. Generates the desired number of points for the initial
design by drawing from the base design. Method sets the inputs attribute of the
SequentialDesign instance, but also returns the initial design as a numpy array if the
simulations are to be run manually. This method can be run repeatedly to draw different
initial designs if the initial target values have not been set, but once the targets have been
set the method will not overwrite them to prevent corruption of the design.

Target values must be an array with length (n_init,), with values obtained by running
the initial design through the simulation. Note that this means the initial design must
be created prior to running this method – if this method is called prior to
generate_initial_design, the code will raise an error.


	Parameters

	targets (ndarray) – Initial value of targets, must be a 1D numpy array with shape (n_init,)



	Returns

	None



	Return type

	None










	
set_next_target(target)

	Set value of next target

Updates the target array with the correct value (from running the actual simulation) of the
latest design point determined using get_next_point. The target input must be a float
or an array of length 1. The code internally checks the inputs and targets for any problems
that may have occurred in updating them correctly, and if all is well then updates the
target array and increments the number of iterations. If the design has not been
correctly initialized, or get_next_point has not been previously run, this method
will raise an error.


	Parameters

	target (float or length 1 array) – New target value found from evaluating the simulation on the latest design
point found from the get_next_point method.



	Returns

	None



	Return type

	None
















The MICEFastGP Class

Derived GaussianProcess class implementing the Woodbury matrix identity for fast predictions

This class implements a Gaussian Process that is used in the MICE Sequential Design. The GP
is fit using all candidate points from the sequential design, and the uses the Woodbury
matrix identity to correct that fit to exclude the candidate point in question. This reduces
the cost of fitting the GP from O(n^3) to O(n^2), which can dramatically speed up this
process for large numbers of candidate points. This is mostly used for the particular
application to the MICE sequential design, but could potentially have other applications
where many candidate points are to be considered one at a time.


	
class mogp_emulator.SequentialDesign.MICEFastGP(*args)

	Derived GaussianProcess class implementing the Woodbury matrix identity for fast predictions

This class implements a Gaussian Process that is used in the MICE Sequential Design. The GP
is fit using all candidate points from the sequential design, and the uses the Woodbury
matrix identity to correct that fit to exclude the candidate point in question. This reduces
the cost of fitting the GP from O(n^3) to O(n^2), which can dramatically speed up this
process for large numbers of candidate points. This is mostly used for the particular
application to the MICE sequential design, but could potentially have other applications
where many candidate points are to be considered one at a time.


	
fast_predict(index)

	Make a fast prediction using one input point to a fit GP

This method is used to correct a Gaussian Process fit to a set of candidate points to
evaluate the uncertainty at the candidate point. It is used in the MICE sequential
design procedure to examine the mutual information between candidate points by determining
how well correlated the design point is in question to the remainder of the candidates.
It uses the Woodbury matrix identity to correct the existing GP fit (which requires
O(n^3) operations) using O(n^2) operations, speeding up the process significantly for
large candidate design sizes.

The method requires a fit GP, and the index of the input point that is to be excluded.
The method then corrects the GP fit and computes the uncertainty of the prediction
on the excluded point returning the uncertainty as a float.


	Parameters

	index (int) – Index of input point to be excluded in the fit and to which the prediction
will be applied. Must be an integer with 0 <= index < n (where n is the number
of target points in the fit GP, or the number of candidate points when
applied to the MICE procedure).



	Returns

	Uncertainty in the corrected fit applied to the given index point



	Return type

	float

















          

      

      

    

  

    
      
          
            
  
GP Emulator Benchmarks



	Rosenbrock Function Benchmark

	Branin Function Benchmark

	Tsunami Data Benchmark









          

      

      

    

  

    
      
          
            
  
Rosenbrock Function Benchmark

This benchmark performs convergence tests on a single emulator with variable numbers of input parameters.
The example is based on the Rosenbrock function (see https://www.sfu.ca/~ssurjano/rosen.html). This
function can be defined in an artibrary number of dimensions, so it provides a useful test for how
emulators based on increasing numbers of parameters perform as the size of the training data is varied.
As the number of training points increases, the prediction error and prediction variance should
decrease. However, this will depend on the number of dimensions in the function – in general, the
size of the input space grows exponentially with the number of dimensions, while the samples 
drawn here grow linearly with the number of dimensions. Thus, the higher dimensional emulators will
perform worse for the same number of samples per dimension.





          

      

      

    

  

    
      
          
            
  
Branin Function Benchmark

This benchmark performs convergence tests on multiple realizations of the 2D Branin function.
Details of the 2D Branin function can be found at https://www.sfu.ca/~ssurjano/branin.html.
This particular version uses 8 realizations of the Branin function, each with a different
set of parameters. The code samples these 8 realizations simultaneously using a spacefilling
Latin Hypercube experimental design with a varying number of target points, and then tests
the convergence of the resulting emulators. As the number of targe points increases, the
prediction error and prediction variance should decrease.

(Note however that eventually, the predictions worsen once the number of target points becomes
large enough that the points become too densely sampled. In this case, the points become
co-linear and the resulting covariance matrix is singular and cannot be inverted. To avoid
this problem, the code iteratively adds additional noise to the covariance function to
stabilize the inversion. However, this noise reduces the accuracy of the predictions. The
values chosen for this benchmark attempt to avoid this, but in some cases this still becomes
a problem due to the inherent smoothness of the squared exponential covariance function.)





          

      

      

    

  

    
      
          
            
  
Tsunami Data Benchmark

This benchmark examines the performance of emulators fit in parallel to multiple targets. The
benchmark uses a set of tsunami simulations, where the inputs are 14 values of the seafloor
displacement resulting from an earthquake, and the outputs are tsunami wave heights at
different spatial locations. This benchmark fits 8, 16, 32, and 64 output points using
1, 2, 4, and 8 processes, and records the time required per emulator to perform the fitting.
The actual performance will depend on the specific machine and the number of cores available.
Once the number of processes exceeds the number of cores on the machine, the fitting time will
increase, so the results will depend on the exact setup used. For reference, tests on a quad core
MacBook Pro found that the fitting took roughly 1 second per emulator on a single core, with the time
per emulator dropping by about a factor of 2 when 4 processes were used.
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