
Multi-Output GP Emulator
Documentation

Release 0.1.1

Eric Daub

May 20, 2020





Contents:

1 The GaussianProcess Class 1

2 The MultiOutputGP Class 7

3 The Kernel Class 13

4 The ExperimentalDesign Class 21

5 The MonteCarloDesign Class 25

6 The LatinHypercubeDesign Class 29

7 The SequentialDesign Class 33

8 The MICEDesign Class 41

9 The MICEFastGP Class 49

10 GP Emulator Benchmarks 51
10.1 Rosenbrock Function Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.2 Branin Function Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.3 Tsunami Data Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

11 Indices and tables 53

Python Module Index 55

Index 57

i



ii



CHAPTER 1

The GaussianProcess Class

Implementation of a Gaussian Process Emulator.

This class provides an interface to fit a Gaussian Process Emulator to a set of training data. The class can be initialized
from either a pair of inputs/targets arrays, or a file holding data saved from a previous emulator instance (saved via
the save_emulator method). Once the emulator has been created, the class provides methods for fitting optimal
hyperparameters, changing hyperparameter values, making predictions, and other calculations associated with fitting
and making predictions.

The internal emulator structure involves arrays for the inputs, targets, and hyperparameters. Other useful information
are the number of training examples n and the number of input parameters D. These parameters are available externally
through the get_n and get_D methods

Example:

>>> import numpy as np
>>> from mogp_emulator import GaussianProcess
>>> x = np.array([[1., 2., 3.], [4., 5., 6.]])
>>> y = np.array([4., 6.])
>>> gp = GaussianProcess(x, y)
>>> print(gp)
Gaussian Process with 2 training examples and 3 input variables
>>> gp.get_n()
2
>>> gp.get_D()
3
>>> np.random.seed(47)
>>> gp.learn_hyperparameters()
(5.140462159403397, array([-13.02460687, -4.02939647, -39.2203646 , 3.25809653]))
>>> x_predict = np.array([[2., 3., 4.], [7., 8., 9.]])
>>> gp.predict(x_predict)
(array([4.74687618, 6.84934016]), array([0.01639298, 1.05374973]),
array([[8.91363045e-05, 7.18827798e-01, 3.74439445e-16],

[4.64005897e-06, 3.74191346e-02, 1.94917337e-17]]))

class mogp_emulator.GaussianProcess.GaussianProcess(*args)
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Implementation of a Gaussian Process Emulator.

This class provides an interface to fit a Gaussian Process Emulator to a set of training data. The class can
be initialized from either a pair of inputs/targets arrays, or a file holding data saved from a previous emulator
instance (saved via the save_emulator method). Once the emulator has been created, the class provides
methods for fitting optimal hyperparameters, changing hyperparameter values, making predictions, and other
calculations associated with fitting and making predictions.

The internal emulator structure involves arrays for the inputs, targets, and hyperparameters. Other useful in-
formation are the number of training examples n and the number of input parameters D. These parameters are
available externally through the get_n and get_D methods

Example:

>>> import numpy as np
>>> from mogp_emulator import GaussianProcess
>>> x = np.array([[1., 2., 3.], [4., 5., 6.]])
>>> y = np.array([4., 6.])
>>> gp = GaussianProcess(x, y)
>>> print(gp)
Gaussian Process with 2 training examples and 3 input variables
>>> gp.get_n()
2
>>> gp.get_D()
3
>>> np.random.seed(47)
>>> gp.learn_hyperparameters()
(5.140462159403397, array([-13.02460687, -4.02939647, -39.2203646 , 3.
→˓25809653]))
>>> x_predict = np.array([[2., 3., 4.], [7., 8., 9.]])
>>> gp.predict(x_predict)
(array([4.74687618, 6.84934016]), array([0.01639298, 1.05374973]),
array([[8.91363045e-05, 7.18827798e-01, 3.74439445e-16],

[4.64005897e-06, 3.74191346e-02, 1.94917337e-17]]))

__init__(*args)
Create a new GP Emulator

Creates a new GP Emulator from either the input data and targets to be fit or a file holding the input/targets
and (optionally) learned parameter values.

Arguments passed to the __init__ method must be either two arguments which are numpy arrays
inputs and targets, described below, three arguments which are the same inputs and targets
arrays plus a float representing the nugget parameter, or a single argument which is the filename (string
or file handle) of a previously saved emulator.

inputs is a 2D array-like object holding the input data, whose shape is n by D, where n is the number of
training examples to be fit and D is the number of input variables to each simulation.

targets is the target data to be fit by the emulator, also held in an array-like object. This must be a 1D
array of length n.

nugget is the additional noise added to the emulator targets when fitting. This can take on values None
(in which case, noise will be added adaptively to stabilize fitting), or a non-negative float (in which case, a
fixed noise level will be used). If no value is specified for the nugget parameter, None is the default.

If two or three input arguments inputs, targets, and optionally nugget are given:

Parameters

2 Chapter 1. The GaussianProcess Class
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• inputs (ndarray) – Numpy array holding emulator input parameters. Must be 2D
with shape n by D, where n is the number of training examples and D is the number of
input parameters for each output.

• targets (ndarray) – Numpy array holding emulator targets. Must be 1D with length
n

• nugget – Noise to be added to the diagonal or None. A float specifies the noise level
explicitly, while if None is given, the noise will set to be as small as possible to ensure
stable inversion of the covariance matrix. Optional, default is None.

If one input argument emulator_file is given:

Parameters emulator_file (str or file) – Filename or file object for saved emulator
parameters (using the save_emulator method)

Returns New GaussianProcess instance

Return type GaussianProcess

get_D()
Returns number of inputs for the emulator

Returns Number of inputs for the emulator object

Return type int

get_n()
Returns number of training examples for the emulator

Returns Number of training examples for the emulator object

Return type int

get_nugget()
Returns emulator nugget parameter

Returns current value of the nugget parameter. If the nugget is selected adaptively, returns None.

Returns Current nugget value, either a float or None

Return type float or None

get_params()
Returns emulator parameters

Returns current parameters for the emulator as a numpy array if they have been fit. If no parameters have
been fit, returns None.

Returns Current parameter values (numpy array of length D + 1), or None if the parameters
have not been fit.

Return type ndarray or None

hessian(theta)
Calculate the Hessian of the negative log-likelihood

Calculate the Hessian of the negative log-likelihood with respect to the hyperparameters. Note that this
function is normally used only when fitting the hyperparameters, and it is not needed to make predic-
tions. It is also used to estimate an appropriate step size when fitting hyperparameters using the lognormal
approximation or MCMC sampling.

When used in an optimization routine, the hessian method is called after evaluating the
loglikelihood method. The implementation takes advantage of this by storing the inverse of
the covariance matrix, which is expensive to compute and is used by the loglikelihood and
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partial_devs methods as well. If the function is evaluated with a different set of parameters than
was previously used to set the log-likelihood, the method calls _set_params to compute the needed
information. However, caling hessian does not evaluate the log-likelihood, so it does not change the
cached values of the parameters or log-likelihood.

Parameters theta (ndarray) – Value of the hyperparameters. Must be array-like with shape
(D + 1,)

Returns Hessian of the negative log-likelihood (array with shape (D + 1, D + 1))

Return type ndarray

learn_hyperparameters(n_tries=15, theta0=None, method=’L-BFGS-B’, **kwargs)
Fit hyperparameters by attempting to minimize the negative log-likelihood

Fits the hyperparameters by attempting to minimize the negative log-likelihood multiple times from a
given starting location and using a particular minimization method. The best result found among all of the
attempts is returned, unless all attempts to fit the parameters result in an error (see below).

If the method encounters an overflow (this can result because the parameter values stored are the logarithm
of the actual hyperparameters to enforce positivity) or a linear algebra error (occurs when the covariance
matrix cannot be inverted, even with the addition of additional noise added along the diagonal if adaptive
noise was selected by setting the nugget parameter to be None), the iteration is skipped. If all attempts to
find optimal hyperparameters result in an error, then the method raises an exception.

The theta0 parameter is the point at which the first iteration will start. If more than one attempt is made,
subsequent attempts will use random starting points.

The user can specify the details of the minimization method, using any of the gradient-based optimizers
available in scipy.optimize.minimize. Any additional parameters beyond the method specifica-
tion can be passed as keyword arguments.

The method returns the minimum negative log-likelihood found and the parameter values at which that
minimum was obtained. The method also sets the current values of the hyperparameters to these optimal
values and pre-computes the matrices needed to make predictions.

Parameters

• n_tries (int) – Number of attempts to minimize the negative log-likelihood function.
Must be a positive integer (optional, default is 15)

• theta0 (None or ndarray) – Initial starting point for the first iteration. If present,
must be array-like with shape (D + 1,). If None is given, then a random value is
chosen. (Default is None)

• method (str) – Minimization method to be used. Can be any gradient-based optimiza-
tion method available in scipy.optimize.minimize. (Default is 'L-BFGS-B')

• **kwargs – Additional keyword arguments to be passed to the minimization routine.
see available parameters in scipy.optimize.minimize for details.

Returns Minimum negative log-likelihood values and hyperparameters (numpy array with shape
(D + 1,)) used to obtain those values. The method also sets the current values of the hy-
perparameters to these optimal values and pre-computes the matrices needed to make predic-
tions.

Return type tuple containing a float and an ndarray

loglikelihood(theta)
Calculate the negative log-likelihood at a particular value of the hyperparameters

Calculate the negative log-likelihood for the given set of parameters. Calling this method sets the parameter
values and computes the needed inverse matrices in order to evaluate the log-likelihood and its derivatives.

4 Chapter 1. The GaussianProcess Class
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In addition to returning the log-likelihood value, it stores the current value of the hyperparameters and
log-likelihood in attributes of the object.

Parameters theta (ndarray) – Value of the hyperparameters. Must be array-like with shape
(D + 1,)

Returns negative log-likelihood

Return type float

partial_devs(theta)
Calculate the partial derivatives of the negative log-likelihood

Calculate the partial derivatives of the negative log-likelihood with respect to the hyperparameters. Note
that this function is normally used only when fitting the hyperparameters, and it is not needed to make
predictions.

During normal use, the partial_devsmethod is called after evaluating the loglikelihoodmethod.
The implementation takes advantage of this by storing the inverse of the covariance matrix, which is expen-
sive to compute and is used by the loglikelihood, partial_devs, and hessian methods. If the
function is evaluated with a different set of parameters than was previously used to set the log-likelihood,
the method calls _set_params to compute the needed information. However, caling partial_devs
does not evaluate the log-likelihood, so it does not change the cached values of the parameters or log-
likelihood.

Parameters theta (ndarray) – Value of the hyperparameters. Must be array-like with shape
(D + 1,)

Returns partial derivatives of the negative log-likelihood (array with shape (D + 1,))

Return type ndarray

predict(testing, do_deriv=True, do_unc=True)
Make a prediction for a set of input vectors

Makes predictions for the emulator on a given set of input vectors. The input vectors must be passed as
a (n_predict, D) or (D,) shaped array-like object, where n_predict is the number of different
prediction points under consideration and D is the number of inputs to the emulator. If the prediction inputs
array has shape (D,), then the method assumes n_predict == 1. The prediction is returned as an
(n_predict, ) shaped numpy array as the first return value from the method.

Optionally, the emulator can also calculate the uncertainties in the predictions and the derivatives with
respect to each input parameter. If the uncertainties are computed, they are returned as the second output
from the method as an (n_predict,) shaped numpy array. If the derivatives are computed, they are
returned as the third output from the method as an (n_predict, D) shaped numpy array.

As with the fitting, this computation can be done independently for each emulator and thus can be done in
parallel.

Parameters

• testing (ndarray) – Array-like object holding the points where predictions will be
made. Must have shape (n_predict, D) or (D,) (for a single prediction)

• do_deriv (bool) – (optional) Flag indicating if the derivatives are to be computed. If
False the method returns None in place of the derivative array. Default value is True.

• do_unc (bool) – (optional) Flag indicating if the uncertainties are to be computed. If
False the method returns None in place of the uncertainty array. Default value is True.

• processes (int or None) – (optional) Number of processes to use when making
the predictions. Must be a positive integer or None to use the number of processors on the
computer (default is None)
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Returns Tuple of numpy arrays holding the predictions, uncertainties, and derivatives, respec-
tively. Predictions and uncertainties have shape (n_predict,) while the derivatives have
shape (n_predict, D). If the do_unc or do_deriv flags are set to False, then those
arrays are replaced by None.

Return type tuple

save_emulator(filename)
Write emulators to disk

Method saves the emulator to disk using the given filename or file handle. The method writes the inputs
and targets arrays to file. If the model has been assigned parameters, either manually or by fitting, those
parameters are saved as well. Once saved, the emulator can be read by passing the file name or handle to
the one-argument __init__ method.

Parameters filename (str or file) – Name of file (or file handle) to which the emulator
will be saved.

Returns None

set_nugget(nugget)
Set the nugget parameter for the emulator

Method for changing the nugget parameter for the emulator. When a new emulator is initilized, this is
set to None.

The nugget parameter controls how noise is added to the covariance matrix in order to stabilize the
inversion or smooth the emulator predictions. If nugget is a non-negative float, then that particular
value is used for the nugget. Note that setting this parameter to be zero enforces that the emulator strictly
interpolates between points. Alternatively, if nugget is set to be None, the fitting routine will adaptively
make the noise parameter as large as is needed to ensure that the emulator can be fit.

Parameters nugget (None or float) – Controls how noise is added to the emulator. If
nugget is a nonnegative float, then this manually sets the noise parameter (if negative, this
will lead to an error), with nugget = 0 resulting in interpolation with no smoothing noise
added. nugget = None will adaptively select the smallest value of the noise term that
still leads to a stable inversion of the matrix. Default behavior is nugget = None.

Returns None

Return type None
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CHAPTER 2

The MultiOutputGP Class

Implementation of a multiple-output Gaussian Process Emulator.

This class provides an interface to fit a Gaussian Process Emulator to multiple targets using the same input
data. The class creates all of the necessary sub-emulators from the input data and provides interfaces to the
learn_hyperparameters and predict methods of the sub-emulators. Because the emulators are all fit in-
dependently, the class provides the option to use multiple processes to fit the emulators and make predictions in
parallel.

The emulators are stored internally in a list. Other useful information stored is the numer of emulators
n_emulators, number of training examples n, and number of input parameters D. These other variables are made
available externally through the get_n_emulators, get_n, and get_D methods.

Example:

>>> import numpy as np
>>> from mogp_emulator import MultiOutputGP
>>> x = np.array([[1., 2., 3.], [4., 5., 6.]])
>>> y = np.array([[4., 6.], [5., 7.]])
>>> mogp = MultiOutputGP(x, y)
>>> print(mogp)
Multi-Output Gaussian Process with:
2 emulators
2 training examples
3 input variables
>>> mogp.get_n_emulators()
2
>>> mogp.get_n()
2
>>> mogp.get_D()
3
>>> np.random.seed(47)
>>> mogp.learn_hyperparameters()
[(5.140462159403397, array([-13.02460687, -4.02939647, -39.2203646 , 3.25809653])),
(5.322783716197557, array([-18.448741 , -5.46557813, -4.81355357, 3.61091708]))]

>>> x_predict = np.array([[2., 3., 4.], [7., 8., 9.]])

(continues on next page)

7



Multi-Output GP Emulator Documentation, Release 0.1.1

(continued from previous page)

>>> mogp.predict(x_predict)
(array([[4.74687618, 6.84934016],

[5.7350324 , 8.07267051]]),
array([[0.01639298, 1.05374973],

[0.01125792, 0.77568672]]),
array([[[8.91363045e-05, 7.18827798e-01, 3.74439445e-16],

[4.64005897e-06, 3.74191346e-02, 1.94917337e-17]],
[[5.58461022e-07, 2.42945502e-01, 4.66315152e-01],
[1.24593861e-07, 5.42016666e-02, 1.04035918e-01]]]))

class mogp_emulator.MultiOutputGP.MultiOutputGP(*args)
Implementation of a multiple-output Gaussian Process Emulator.

This class provides an interface to fit a Gaussian Process Emulator to multiple targets using the same input
data. The class creates all of the necessary sub-emulators from the input data and provides interfaces to the
learn_hyperparameters and predict methods of the sub-emulators. Because the emulators are all fit
independently, the class provides the option to use multiple processes to fit the emulators and make predictions
in parallel.

The emulators are stored internally in a list. Other useful information stored is the numer of emulators
n_emulators, number of training examples n, and number of input parameters D. These other variables
are made available externally through the get_n_emulators, get_n, and get_D methods.

Example:

>>> import numpy as np
>>> from mogp_emulator import MultiOutputGP
>>> x = np.array([[1., 2., 3.], [4., 5., 6.]])
>>> y = np.array([[4., 6.], [5., 7.]])
>>> mogp = MultiOutputGP(x, y)
>>> print(mogp)
Multi-Output Gaussian Process with:
2 emulators
2 training examples
3 input variables
>>> mogp.get_n_emulators()
2
>>> mogp.get_n()
2
>>> mogp.get_D()
3
>>> np.random.seed(47)
>>> mogp.learn_hyperparameters()
[(5.140462159403397, array([-13.02460687, -4.02939647, -39.2203646 , 3.
→˓25809653])),
(5.322783716197557, array([-18.448741 , -5.46557813, -4.81355357, 3.
→˓61091708]))]
>>> x_predict = np.array([[2., 3., 4.], [7., 8., 9.]])
>>> mogp.predict(x_predict)
(array([[4.74687618, 6.84934016],

[5.7350324 , 8.07267051]]),
array([[0.01639298, 1.05374973],

[0.01125792, 0.77568672]]),
array([[[8.91363045e-05, 7.18827798e-01, 3.74439445e-16],

[4.64005897e-06, 3.74191346e-02, 1.94917337e-17]],
[[5.58461022e-07, 2.42945502e-01, 4.66315152e-01],
[1.24593861e-07, 5.42016666e-02, 1.04035918e-01]]]))

8 Chapter 2. The MultiOutputGP Class



Multi-Output GP Emulator Documentation, Release 0.1.1

__init__(*args)
Create a new multi-output GP Emulator

Creates a new multi-output GP Emulator from either the input data and targets to be fit or a file holding
the input/targets and (optionally) learned parameter values.

Arguments passed to the __init__ method must be two or three arguments which are numpy arrays
inputs and targets and optionally nugget, described below, or a single argument which is the
filename (string or file handle) of a previously saved emulator.

inputs is a 2D array-like object holding the input data, whose shape is n by D, where n is the number of
training examples to be fit and D is the number of input variables to each simulation. Because the model
assumes all outputs are drawn from the same identical set of simulations (i.e. the normal use case is to fit
a series of computer simulations with multiple outputs from the same input), the input to each emulator is
identical.

targets is the target data to be fit by the emulator, also held in an array-like object. This can be
either a 1D or 2D array, where the last dimension must have length n. If the targets array is of shape
(n_emulators,n), then the emulator fits a total of n_emulators to the different target arrays, while
if targets has shape (n,), a single emulator is fit.

nugget is a list or other iterable of nugget parameters for each emulator. Its length must match the
number of targets to be fit. The values must be None (adaptive noise addition) or a non-negative float, and
the emulators can have different noise behaviors.

If two or three input arguments inputs, targets, and optionally nugget are given:

Parameters

• inputs (ndarray) – Numpy array holding emulator input parameters. Must be 2D
with shape n by D, where n is the number of training examples and D is the number of
input parameters for each output.

• targets (ndarray) – Numpy array holding emulator targets. Must be 2D or 1D with
length n in the final dimension. The first dimension is of length n_emulators (defaults
to a single emulator if the input is 1D)

• nugget – None or list or other iterable holding values for nugget parameter for each
emulator. Length must be n_emulators. Individual values can be None (adaptive
noise addition), or a non-negative float. This parameter is optional, and defaults to None

If one input argument emulator_file is given:

Parameters emulator_file (str or file) – Filename or file object for saved emulator
parameters (using the save_emulator method)

Returns New MultiOutputGP instance

Return type MultiOutputGP

get_D()
Returns number of inputs for each emulator

Returns Number of inputs for each emulator in the object

Return type int

get_n()
Returns number of training examples in each emulator

Returns Number of training examples in each emulator in the object

Return type int

9
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get_n_emulators()
Returns the number of emulators

Returns Number of emulators in the object

Return type int

get_nugget()
Returns value of nugget for all emulators

Returns value of nugget for all emulators as a list. Values can be None, or a nonnegative float for each
emulator.

Returns nugget values for all emulators (list of length n_emulators containint floats or
None. nugget type and values can vary across all emulators if desired.)

Return type list

learn_hyperparameters(n_tries=15, theta0=None, processes=None, method=’L-BFGS-B’,
**kwargs)

Fit hyperparameters for each model

Fit the hyperparameters for each emulator. Options that can be specified include the number of different
initial conditions to try during the optimization step, the level of verbosity of output during the fitting,
the initial values of the hyperparameters to use when starting the optimization step, and the number of
processes to use when fitting the models. Since each model can be fit independently of the others, paral-
lelization can significantly improve the speed at which the models are fit.

Returns a list holding n_emulators tuples, each of which contains the minimum negative log-likelihood
and a numpy array holding the optimal parameters found for each model.

If the method encounters an overflow (this can result because the parameter values stored are the logarithm
of the actual hyperparameters to enforce positivity) or a linear algebra error (occurs when the covariance
matrix cannot be inverted, even with the addition of additional “nugget” or noise added along the diagonal),
the iteration is skipped. If all attempts to find optimal hyperparameters result in an error, then the method
raises an exception.

Parameters

• n_tries (int) – (optional) The number of different initial conditions to try when opti-
mizing over the hyperparameters (must be a positive integer, default = 15)

• theta0 (ndarray or None) – (optional) Initial value of the hyperparameters to use
in the optimization routine (must be array-like with a length of D + 1, where D is the
number of input parameters to each model). Default is None.

• processes (int or None) – (optional) Number of processes to use when fitting the
model. Must be a positive integer or None to use the number of processors on the com-
puter (default is None)

• method (str) – Minimization method to be used. Can be any gradient-based optimiza-
tion method available in scipy.optimize.minimize. (Default is 'L-BFGS-B')

• **kwargs – Additional keyword arguments to be passed to the minimization routine.
see available parameters in scipy.optimize.minimize for details.

Returns List holding n_emulators tuples of length 2. Each tuple contains the minimum
negative log-likelihood for that particular emulator and a numpy array of length D + 2
holding the corresponding hyperparameters

Return type list

10 Chapter 2. The MultiOutputGP Class
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predict(testing, do_deriv=True, do_unc=True, processes=None)
Make a prediction for a set of input vectors

Makes predictions for each of the emulators on a given set of input vectors. The input vectors must be
passed as a (n_predict, D) or (D,) shaped array-like object, where n_predict is the number of
different prediction points under consideration and D is the number of inputs to the emulator. If the predic-
tion inputs array has shape (D,), then the method assumes n_predict == 1. The prediction points
are passed to each emulator and the predictions are collected into an (n_emulators, n_predict)
shaped numpy array as the first return value from the method.

Optionally, the emulator can also calculate the uncertainties in the predictions and the derivatives with
respect to each input parameter. If the uncertainties are computed, they are returned as the second output
from the method as an (n_emulators, n_predict) shaped numpy array. If the derivatives are
computed, they are returned as the third output from the method as an (n_emulators, n_predict,
D) shaped numpy array.

As with the fitting, this computation can be done independently for each emulator and thus can be done in
parallel.

Parameters

• testing (ndarray) – Array-like object holding the points where predictions will be
made. Must have shape (n_predict, D) or (D,) (for a single prediction)

• do_deriv (bool) – (optional) Flag indicating if the derivatives are to be computed. If
False the method returns None in place of the derivative array. Default value is True.

• do_unc (bool) – (optional) Flag indicating if the uncertainties are to be computed. If
False the method returns None in place of the uncertainty array. Default value is True.

• processes (int or None) – (optional) Number of processes to use when making
the predictions. Must be a positive integer or None to use the number of processors on the
computer (default is None)

Returns Tuple of numpy arrays holding the predictions, uncertainties, and derivatives, re-
spectively. Predictions and uncertainties have shape (n_emulators, n_predict)
while the derivatives have shape (n_emulators, n_predict, D). If the do_unc
or do_deriv flags are set to False, then those arrays are replaced by None.

Return type tuple

save_emulators(filename)
Write emulators to disk

Method saves emulators to disk using the given filename or file handle. The (common) inputs to all
emulators are saved, and all targets are collected into a single numpy array (this saves the data in the same
format used in the two-argument __init__ method). If the model has been assigned parameters, either
manually or by fitting, those parameters are saved as well. Once saved, the emulator can be read by passing
the file name or handle to the one-argument __init__ method.

Parameters filename (str or file) – Name of file (or file handle) to which the emula-
tors will be saved.

Returns None

set_nugget(nugget)
Sets value of nugget for all emulators

Sets value of nugget for all emulators from values provided as a list or other iterable. Values can be None,
or a nonnegative float for each emulator. The length of the input list must have length n_emulators.

11
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Parameters nugget – List of nugget values for all emulators (must be of length
n_emulators and contain floats or None. Nugget type and values can vary across all
emulators if desired.)

12 Chapter 2. The MultiOutputGP Class



CHAPTER 3

The Kernel Class

Kernel module, implements a few standard stationary kernels for use with the GaussianProcess class. At
present, kernels can only be selected manually by setting the kernel attribute of the GP. The default is to use
the SquaredExponential kernel, but this can be changed once the GaussianProcess instance is created.

class mogp_emulator.Kernel.Kernel
Generic class representing a stationary kernel

This base class implements the necessary scaffolding for defining a stationary kernel. Stationary kernels are only
dependent on a distance measure between any two points, so the base class holds all the necessary information
for doing the distance computation. Individual subclasses will implement the functional dependence of the
kernel on the distance, plus first and second derivatives (if desired) to compute the gradient or Hessian of the
kernel with respect to the hyperparameters.

This implementation uses a scaled euclidean distance metric. Each individual parameter has a hyperparam-
eter scale associated with it that is used in the distance computation. If a different metric is to be defined,
a new base class needs to be defined that implements the calc_r, and optionally calc_drdtheta and
calc_d2rdtheta2 methods if gradient or Hessian computation is desired. The methods kernel_f,
kernel_gradient, and kernel_hessian can then be used to compute the appropriate quantities with
no further modification.

Note that the Kernel object just collates all of the methods together; the class itself does not hold any information
on the data point or hyperparamters, which are passed directly to the appropriate methods. Thus, no information
needs to be provided when creating a new Kernal instance.

calc_K(r)
Calculate kernel as a function of distance

This method implements the kernel function as a function of distance. Given an array of distances, this
function evaluates the kernel function of those values, returning an array of the same shape. Note that this
is not implemented for the base class, as this must be defined for a specific kernel.

Parameters r (array-like) – Array holding distances between all points. All values in this
array must be non-negative.

Returns Array holding kernel evaluations, with the same shape as the input r

Return type ndarray

13
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calc_d2Kdr2(r)
Calculate second derivative of kernel as a function of distance

This method implements the second derivative of the kernel function as a function of distance. Given an
array of distances, this function evaluates the second derivative function of those values, returning an array
of the same shape. Note that this is not implemented for the base class, as this must be defined for a specific
kernel.

Parameters r (array-like) – Array holding distances between all points. All values in this
array must be non-negative.

Returns Array holding kernel second derivatives, with the same shape as the input r

Return type ndarray

calc_d2rdtheta2(x1, x2, params)
Calculate all second derivatives of the distance between all pairs of points with respect to the hyperparam-
eters

This method computes all second derivatives of the scaled Euclidean distance between all pairs of points
in x1 and x2 with respect to the hyperparameters. The gradient is held in an array with shape (D, D,
n1, n2), where D is the length of params, n1 is the length of the first axis of x1, and n2 is the length
of the first axis of x2. This is used in the computation of the gradient and Hessian of the kernel. The first
two indices represents the different derivatives with respect to each hyperparameter.

Parameters

• x1 (array-like) – First input array. Must be a 1-D or 2-D array, with the length of the
last dimension matching the last dimension of x2 and one less than the length of params.
x1 may be 1-D if either each point consists of a single parameter (and params has length
2) or the array only contains a single point (in which case, the array will be reshaped to
(1, D - 1)).

• x2 (array-like) – Second input array. The same restrictions that apply to x1 also
apply here.

• params (array-like) – Hyperparameter array. Must be 1-D with length one greater
than the last dimension of x1 and x2.

Returns Array holding the second derivatives of the pair-wise distances between points in arrays
x1 and x2 with respect to the hyperparameters. Will be an array with shape (D, D, n1,
n2), where D is the length of params, n1 is the length of the first axis of x1 and n2 is the
length of the first axis of x2. The first two axes indicates the different derivative components
(i.e. the second derivative with respect to the first parameter is [0,0,:,:], the mixed partial
with respect to the first and second parameters is [0,1,:,:] or [1,0,:,:], etc.)

Return type ndarray

calc_dKdr(r)
Calculate first derivative of kernel as a function of distance

This method implements the first derivative of the kernel function as a function of distance. Given an array
of distances, this function evaluates the derivative function of those values, returning an array of the same
shape. Note that this is not implemented for the base class, as this must be defined for a specific kernel.

Parameters r (array-like) – Array holding distances between all points. All values in this
array must be non-negative.

Returns Array holding kernel derivatives, with the same shape as the input r

Return type ndarray
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calc_drdtheta(x1, x2, params)
Calculate the first derivative of the distance between all pairs of points with respect to the hyperparameters

This method computes the derivative of the scaled Euclidean distance between all pairs of points in x1
and x2 with respect to the hyperparameters. The gradient is held in an array with shape (D, n1, n2),
where D is the length of params, n1 is the length of the first axis of x1, and n2 is the length of the
first axis of x2. This is used in the computation of the gradient and Hessian of the kernel. The first index
represents the different derivatives with respect to each hyperparameter.

Parameters

• x1 (array-like) – First input array. Must be a 1-D or 2-D array, with the length of the
last dimension matching the last dimension of x2 and one less than the length of params.
x1 may be 1-D if either each point consists of a single parameter (and params has length
2) or the array only contains a single point (in which case, the array will be reshaped to
(1, D - 1)).

• x2 (array-like) – Second input array. The same restrictions that apply to x1 also
apply here.

• params (array-like) – Hyperparameter array. Must be 1-D with length one greater
than the last dimension of x1 and x2.

Returns Array holding the derivative of the pair-wise distances between points in arrays x1 and
x2 with respect to the hyperparameters. Will be an array with shape (D, n1, n2), where
D is the length of params, n1 is the length of the first axis of x1 and n2 is the length
of the first axis of x2. The first axis indicates the different derivative components (i.e. the
derivative with respect to the first parameter is [0,:,:], etc.)

Return type ndarray

calc_drdx(x1, x2, params)
Calculate the first derivative of the distance between all pairs of points with respect to the first set of inputs

This method computes the derivative of the scaled Euclidean distance between all pairs of points in x1 and
x2 with respect to the first input x1. The gradient is held in an array with shape (D - 1, n1, n2),
where D is the length of params, n1 is the length of the first axis of x1, and n2 is the length of the first
axis of x2. This is used in the computation of the derivative of the kernel with respect to the inputs. The
first index represents the different derivatives with respect to each input dimension.

Parameters

• x1 (array-like) – First input array. Must be a 1-D or 2-D array, with the length of the
last dimension matching the last dimension of x2 and one less than the length of params.
x1 may be 1-D if either each point consists of a single parameter (and params has length
2) or the array only contains a single point (in which case, the array will be reshaped to
(1, D - 1)).

• x2 (array-like) – Second input array. The same restrictions that apply to x1 also
apply here.

• params (array-like) – Hyperparameter array. Must be 1-D with length one greater
than the last dimension of x1 and x2.

Returns Array holding the derivative of the pair-wise distances between points in arrays x1 and
x2 with respect to x1. Will be an array with shape (D, n1, n2), where D is the length of
params, n1 is the length of the first axis of x1 and n2 is the length of the first axis of x2.
The first axis indicates the different derivative components (i.e. the derivative with respect to
the first input parameter is [0,:,:], etc.)

Return type ndarray

15



Multi-Output GP Emulator Documentation, Release 0.1.1

calc_r(x1, x2, params)
Calculate distance between all pairs of points

This method computes the scaled Euclidean distance between all pairs of points in x1 and x2. Each
component distance is multiplied by the corresponding hyperparameter prior to summing and taking the
square root. For example, if x1 = [1.], x2 = [2.], and params = [2., 2.] then calc_r would
return

√︀
2(1− 2)2 =

√
2 as an array with shape (1,1).

Parameters

• x1 (array-like) – First input array. Must be a 1-D or 2-D array, with the length of the
last dimension matching the last dimension of x2 and one less than the length of params.
x1 may be 1-D if either each point consists of a single parameter (and params has length
2) or the array only contains a single point (in which case, the array will be reshaped to
(1, D - 1)).

• x2 (array-like) – Second input array. The same restrictions that apply to x1 also
apply here.

• params (array-like) – Hyperparameter array. Must be 1-D with length one greater
than the last dimension of x1 and x2.

Returns Array holding all pair-wise distances between points in arrays x1 and x2. Will be an
array with shape (n1, n2), where n1 is the length of the first axis of x1 and n2 is the
length of the first axis of x2.

Return type ndarray

kernel_deriv(x1, x2, params)
Compute kernel gradient for a set of inputs

Returns the value of the kernel gradient for two sets of input points and a choice of hyperparameters. This
function should not need to be modified for different choices of the kernel function or distance metric, as
after checking the inputs it simply calls the routine to compute the distance metric, kernel function, and
the appropriate derivative functions of the distance and kernel functions.

Parameters

• x1 (array-like) – First input array. Must be a 1-D or 2-D array, with the length of the
last dimension matching the last dimension of x2 and one less than the length of params.
x1 may be 1-D if either each point consists of a single parameter (and params has length
2) or the array only contains a single point (in which case, the array will be reshaped to
(1, D - 1)).

• x2 (array-like) – Second input array. The same restrictions that apply to x1 also
apply here.

• params (array-like) – Hyperparameter array. Must be 1-D with length one greater
than the last dimension of x1 and x2.

Returns Array holding the gradient of the kernel function between points in arrays x1 and x2
with respect to the hyperparameters. Will be an array with shape (D, n1, n2), where D is
the length of params, n1 is the length of the first axis of x1 and n2 is the length of the first
axis of x2. The first axis indicates the different derivative components (i.e. the derivative
with respect to the first parameter is [0,:,:], etc.)

Return type ndarray

kernel_f(x1, x2, params)
Compute kernel values for a set of inputs
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Returns the value of the kernel for two sets of input points and a choice of hyperparameters. This function
should not need to be modified for different choices of the kernel function or distance metric, as after
checking the inputs it simply calls the routine to compute the distance metric and then evaluates the kernel
function for those distances.

Parameters

• x1 (array-like) – First input array. Must be a 1-D or 2-D array, with the length of the
last dimension matching the last dimension of x2 and one less than the length of params.
x1 may be 1-D if either each point consists of a single parameter (and params has length
2) or the array only contains a single point (in which case, the array will be reshaped to
(1, D - 1)).

• x2 (array-like) – Second input array. The same restrictions that apply to x1 also
apply here.

• params (array-like) – Hyperparameter array. Must be 1-D with length one greater
than the last dimension of x1 and x2.

Returns Array holding all kernel values between points in arrays x1 and x2. Will be an array
with shape (n1, n2), where n1 is the length of the first axis of x1 and n2 is the length of
the first axis of x2.

Return type ndarray

kernel_hessian(x1, x2, params)
Calculate the Hessian of the kernel evaluated for all pairs of points with respect to the hyperparameters

Returns the value of the kernel Hessian for two sets of input points and a choice of hyperparameters. This
function should not need to be modified for different choices of the kernel function or distance metric, as
after checking the inputs it simply calls the routine to compute the distance metric, kernel function, and
the appropriate derivative functions of the distance and kernel functions.

Parameters

• x1 (array-like) – First input array. Must be a 1-D or 2-D array, with the length of the
last dimension matching the last dimension of x2 and one less than the length of params.
x1 may be 1-D if either each point consists of a single parameter (and params has length
2) or the array only contains a single point (in which case, the array will be reshaped to
(1, D - 1)).

• x2 (array-like) – Second input array. The same restrictions that apply to x1 also
apply here.

• params (array-like) – Hyperparameter array. Must be 1-D with length one greater
than the last dimension of x1 and x2.

Returns Array holding the Hessian of the pair-wise distances between points in arrays x1 and
x2 with respect to the hyperparameters. Will be an array with shape (D, D, n1, n2),
where D is the length of params, n1 is the length of the first axis of x1 and n2 is the length
of the first axis of x2. The first two axes indicates the different derivative components (i.e.
the second derivative with respect to the first parameter is [0,0,:,:], the mixed partial with
respect to the first and second parameters is [0,1,:,:] or [1,0,:,:], etc.)

Return type ndarray

kernel_inputderiv(x1, x2, params)
Compute derivative of Kernel with respect to inputs x1

Returns the value of the kernel derivative with respect to the first set of input points given inputs and a
choice of hyperparameters. This function should not need to be modified for different choices of the kernel
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function or distance metric, as after checking the inputs it simply calls the routine to compute the distance
metric, kernel function, and the appropriate derivative functions of the distance and kernel functions.

Parameters

• x1 (array-like) – First input array. Must be a 1-D or 2-D array, with the length of the
last dimension matching the last dimension of x2 and one less than the length of params.
x1 may be 1-D if either each point consists of a single parameter (and params has length
2) or the array only contains a single point (in which case, the array will be reshaped to
(1, D - 1)).

• x2 (array-like) – Second input array. The same restrictions that apply to x1 also
apply here.

• params (array-like) – Hyperparameter array. Must be 1-D with length one greater
than the last dimension of x1 and x2.

Returns Array holding the derivative of the kernel function between points in arrays x1 and x2
with respect to the first inputs x1. Will be an array with shape (D, n1, n2), where D is
the length of params, n1 is the length of the first axis of x1 and n2 is the length of the first
axis of x2. The first axis indicates the different derivative components (i.e. the derivative
with respect to the first input dimension is [0,:,:], etc.)

Return type ndarray

class mogp_emulator.Kernel.SquaredExponential
Implementation of the squared exponential kernel

Class representing a squared exponential kernel. It derives from the base class for a stationary kernel, using the
scaled Euclidean distance metric. The subclass then just defines the kernel function and its derivatives.

calc_K(r)
Compute K(r) for the squared exponential kernel

This method implements the squared exponential kernel function as a function of distance. Given an array
of distances, this function evaluates the kernel function of those values, returning an array of the same
shape.

Parameters r (array-like) – Array holding distances between all points. All values in this
array must be non-negative.

Returns Array holding kernel evaluations, with the same shape as the input r

Return type ndarray

calc_d2Kdr2(r)
Calculate second derivative of the squared exponential kernel as a function of distance

This method implements the second derivative of the squared exponential kernel function as a function
of distance. Given an array of distances, this function evaluates the second derivative function of those
values, returning an array of the same shape.

Parameters r (array-like) – Array holding distances between all points. All values in this
array must be non-negative.

Returns Array holding kernel second derivatives, with the same shape as the input r

Return type ndarray

calc_dKdr(r)
Calculate first derivative of the squared exponential kernel as a function of distance
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This method implements the first derivative of the squared exponential kernel function as a function of
distance. Given an array of distances, this function evaluates the derivative function of those values,
returning an array of the same shape.

Parameters r (array-like) – Array holding distances between all points. All values in this
array must be non-negative.

Returns Array holding kernel derivatives, with the same shape as the input r

Return type ndarray

class mogp_emulator.Kernel.Matern52
Implementation of the Matern 5/2 kernel

Class representing the Matern 5/2 kernel. It derives from the base class for a stationary kernel, using the scaled
Euclidean distance metric. The subclass then just defines the kernel function and its derivatives.

calc_K(r)
Compute K(r) for the Matern 5/2 kernel

This method implements the Matern 5/2 kernel function as a function of distance. Given an array of
distances, this function evaluates the kernel function of those values, returning an array of the same shape.

Parameters r (array-like) – Array holding distances between all points. All values in this
array must be non-negative.

Returns Array holding kernel evaluations, with the same shape as the input r

Return type ndarray

calc_d2Kdr2(r)
Calculate second derivative of the squared exponential kernel as a function of distance

This method implements the second derivative of the squared exponential kernel function as a function
of distance. Given an array of distances, this function evaluates the second derivative function of those
values, returning an array of the same shape.

Parameters r (array-like) – Array holding distances between all points. All values in this
array must be non-negative.

Returns Array holding kernel second derivatives, with the same shape as the input r

Return type ndarray

calc_dKdr(r)
Calculate first derivative of the Matern 5/2 kernel as a function of distance

This method implements the first derivative of the Matern 5/2 kernel function as a function of distance.
Given an array of distances, this function evaluates the derivative function of those values, returning an
array of the same shape.

Parameters r (array-like) – Array holding distances between all points. All values in this
array must be non-negative.

Returns Array holding kernel derivatives, with the same shape as the input r

Return type ndarray
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CHAPTER 4

The ExperimentalDesign Class

Base class representing a generic one-shot design of experiments with uncorrelated parameters

This class provides the base implementation for a class for designing experiments to sample the parameter space of
a complex model. The parameter space can be specified in a variety of ways, but essentially the user must provide a
Probability Point Function (PPF, or inverse of the Cumulative Distribution Function) for each input parameter. Each
PPF function takes a single numeric input and maps from the interval [0, 1] to the desired parameter distribution value
for a given parameter, and each parameter has a separate function describing its distribution. Note that this makes the
assumption of no correlations between any of the parameter values (a future version may implement an experimental
design where there are such parameter correlations). Once the design is initialized, a desired number of samples can
be drawn from the design, returning an array holding the desired number of samples from the parameter space.

Internally, the class holds the set of PPFs for all of the parameter values, and samples are drawn by calling the
sample method. To draw the samples, a specific method _draw_samples must be defined that generates a series
of points in the [0, 1]𝑛 hypercube, where 𝑛 is the number of paramters. This set of samples from the hypercube
is then mapped to the parameter space using the given PPF functions. Thus, defining a new design protocol only
requires defining a new _draw_samples method and redefining the __init__ method to set the internal method
attribute. By default, no _draw_samples method is defined, so the base ExperimentalDesign class is only
intended to be used to define new protocols (trying to sample from an ExperimentalDesign instance will return
a NotImplementedError).

class mogp_emulator.ExperimentalDesign.ExperimentalDesign(*args)
Base class representing a generic one-shot design of experiments with uncorrelated parameters

This class provides the base implementation for a class for designing experiments to sample the parameter space
of a complex model. The parameter space can be specified in a variety of ways, but essentially the user must
provide a Probability Point Function (PPF, or inverse of the Cumulative Distribution Function) for each input
parameter. Each PPF function takes a single numeric input and maps from the interval [0, 1] to the desired
parameter distribution value for a given parameter, and each parameter has a separate function describing its
distribution. Note that this makes the assumption of no correlations between any of the parameter values (a
future version may implement an experimental design where there are such parameter correlations). Once the
design is initialized, a desired number of samples can be drawn from the design, returning an array holding the
desired number of samples from the parameter space.

Internally, the class holds the set of PPFs for all of the parameter values, and samples are drawn by calling
the sample method. To draw the samples, a specific method _draw_samples must be defined that gen-
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erates a series of points in the [0, 1]𝑛 hypercube, where 𝑛 is the number of paramters. This set of samples
from the hypercube is then mapped to the parameter space using the given PPF functions. Thus, defining a
new design protocol only requires defining a new _draw_samples method and redefining the __init__
method to set the internal method attribute. By default, no _draw_samples method is defined, so the base
ExperimentalDesign class is only intended to be used to define new protocols (trying to sample from an
ExperimentalDesign instance will return a NotImplementedError).

__init__(*args)
Create a new instance of an experimental design

Creates a new instance of a design of experiments, which draws samples from the parameter space of a
complex model. It is often used to generate data for a Gaussian Process emulator to fit the outputs of the
complex model. This is a base class that does not implement the method for sampling from the distribution;
to use an experimental design in practice you should use one of the derived classes provided or create your
own.

The experimental design can be initialized in several ways depending on the arguments provided, ranging
from the simplest to the most complicated.

1. Provide an integer n indicating the number of input parameters. If this is used to create an instance, it
is assumed that all parameters are unformly distributed over the 𝑛-dimensional hypercube.

2. Provide an integer n and a tuple (a, b) of length 2 containing two numeric values (where 𝑎 < 𝑏).
In this case, all parameters are assumed to be uniformly distributed over the interval [𝑎, 𝑏].

3. Provide an integer n and a function that takes a single numeric input in the interval [0, 1] and maps
it to the parameter space. In this case, all parameters are assumed to follow the provided Probability
Point Function.

4. Provide a list of tuples of length 2 containing numeric values (as above, the first number must smaller
than the second number). The design then assumes that the number of parameters is the length of the
list, and each parameter follows a uniform distribution with the bounds given by the respective tuple
in the given list.

5. Provide a list of functions taking a single input (as above, each function must map the interval [0, 1]
to the parameter space). The number of parameters in the design is the length of the list, and the given
PPF functions define the parameter space for each input.

More concretely, if one input parameter is given, you may initilize the class in any of the following ways:

Parameters n_parameters (int) – Integer specifying the number of parameters (must be
positive). The design will sample each parameter over the interval [0, 1]

or

Parameters bounds_list (list) – List of tuples containing two numeric values, each of
which has the smaller number first. Each parameter then takes a uniform distribution with
bounds given by each tuple.

or

Parameters ppf_list (list) – List of functions or other callable, each of which accepts one
argument and maps the interval [0, 1] to the parameter space. Each parameter follows the
distribution given by the respective PPF function.

and if two input parameters are given:

Parameters

• n_parameters (int) – Integer specifying the number of parameters (must be positive).
The design will sample each parameter over the interval [0, 1]
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• bounds (tuple) – Tuple or other iterable containing two numeric values, where the
smaller number must come first. Each parameter then takes a uniform distribution with
bounds given by the numbers provided in the tuple.

or

Parameters

• n_parameters (int) – Integer specifying the number of parameters (must be positive).
The design will sample each parameter over the interval [0, 1]

• ppf (function) – Function or other callable, which accepts one argument and maps the
interval [0, 1] to the parameter space. Each parameter follows the distribution given by the
PPF function.

The scipy.stats package provides implementations of a wide range of distributions, with pre-defined
PPF functions. See the Scipy user manual for more details. Note that in order to get a compatible PPF
function that only takes a single input, you will need to set any parameters needed to define the distribution.

Internally, the class defines any PPF functions based on the input data and collects all of the PPF functions
in a list. The class also contains information on the method used to draw samples from the design.

To create a usable implementation based on this class, the user must define the method _draw_samples,
which takes a positive integer input n_samples and draws n_samples from the [0, 1]𝑛 hypercube,
where 𝑛 is the number of parameters. The user must also modify the method attribute of the design in
order to have the __str__ method work correctly. All other functionality should not require any changes
from the base class.

get_method()
Returns the method used to draw samples from the design

This method returns the method used to draw samples from the experimental design. The base class
does not implement a method, so if you try to call this on the base class the code will raise a
NotImplementedError. When deriving new designs from the base class, the method should be set
when calling the __init__ method.

Returns Method used to draw samples from the design.

Return type str

get_n_parameters()
Returns number of parameters in the experimental design

This method returns the number of parameters in the experimental design. This is set when initializing the
object, an cannot be modified.

Returns Number of parameters in the experimental design.

Return type int

sample(n_samples)
Draw parameter samples from the experimental design

This method implements drawing parameter samples from the experimental design. The method does this
by calling the _draw_samples method to obtain samples from the [0, 1]𝑛 hypercube, where 𝑛 is the
number of parameters. The sample``method then transforms these samples drawn
from the low level method to the actual parameter values using the PPF
functions provided when initilizing the object. Note that this method
also checks that all parameter values are finite; if any ``NaN values are
returned, an error will be raised.
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Note that by implementing the sampling in this way, modifications to the method to draw samples using
a different protocol only needs to change the _draw_samples method. This makes it simpler to define
new designs, as only a single method needs to be altered.

Parameters n_samples (int) – Number of samples to be drawn from the design (must be a
positive integer)

Returns Samples drawn from the design parameter space as a numpy array with shape
(n_samples, n_parameters)

Return type ndarray
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CHAPTER 5

The MonteCarloDesign Class

Class representing a one-shot design of experiments with uncorrelated parameters using Monte Carlo Sampling

This class provides an implementation for a class for designing experiments to sample the parameter space of a
complex model using random Monte Carlo sampling. The parameter space can be specified in a variety of ways,
but essentially the user must provide a Probability Point Function (PPF, or inverse of the Cumulative Distribution
Function) for each input parameter. Each PPF function takes a single numeric input and maps from the interval [0, 1]
to the desired parameter distribution value for a given parameter, and each parameter has a separate function describing
its distribution. Note that this makes the assumption of no correlations between any of the parameter values (a future
version may implement an experimental design where there are such parameter correlations). Once the design is
initialized, a desired number of samples can be drawn from the design, returning an array holding the desired number
of samples from the parameter space.

Internally, the class holds the set of PPFs for all of the parameter values, and samples are drawn by calling the sample
method. To draw the samples, the _draw_samples is used to generate a series of points in the [0, 1]𝑛 hypercube
using random Monte Carlo sampling, where 𝑛 is the number of paramters. This set of samples from the hypercube is
then mapped to the parameter space using the given PPF functions.

This design does not attempt to uniformly sample the space, but rather just makes random draws from the parameter
distributions. For this reason, small designs using this method may not sample the parameter space very efficiently.
However, generating a large number of samples using this protocol can be done very efficiently, as drawing a sample
only requires generating a series of pseduorandom numbers.

class mogp_emulator.ExperimentalDesign.MonteCarloDesign(*args)
Class representing a one-shot design of experiments with uncorrelated parameters using Monte Carlo Sampling

This class provides an implementation for a class for designing experiments to sample the parameter space of
a complex model using random Monte Carlo sampling. The parameter space can be specified in a variety of
ways, but essentially the user must provide a Probability Point Function (PPF, or inverse of the Cumulative
Distribution Function) for each input parameter. Each PPF function takes a single numeric input and maps from
the interval [0, 1] to the desired parameter distribution value for a given parameter, and each parameter has a
separate function describing its distribution. Note that this makes the assumption of no correlations between
any of the parameter values (a future version may implement an experimental design where there are such
parameter correlations). Once the design is initialized, a desired number of samples can be drawn from the
design, returning an array holding the desired number of samples from the parameter space.
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Internally, the class holds the set of PPFs for all of the parameter values, and samples are drawn by calling the
sample method. To draw the samples, the _draw_samples is used to generate a series of points in the
[0, 1]𝑛 hypercube using random Monte Carlo sampling, where 𝑛 is the number of paramters. This set of samples
from the hypercube is then mapped to the parameter space using the given PPF functions.

This design does not attempt to uniformly sample the space, but rather just makes random draws from the
parameter distributions. For this reason, small designs using this method may not sample the parameter space
very efficiently. However, generating a large number of samples using this protocol can be done very efficiently,
as drawing a sample only requires generating a series of pseduorandom numbers.

__init__(*args)
Create a new instance of a Monte Carlo experimental design

Creates a new instance of a Monte Carlo design of experiments, which draws samples randomly from the
parameter space of a complex model. It can be used to generate data for a Gaussian Process emulator to
fit the outputs of the complex model. Because the samples are drawn randomly, small designs may not
sample the space very well, but the samples can be drawn quickly as they are entirely random.

The experimental design can be initialized in several ways depending on the arguments provided, ranging
from the simplest to the most complicated.

1. Provide an integer n indicating the number of input parameters. If this is used to create an instance, it
is assumed that all parameters are unformly distributed over the 𝑛-dimensional hypercube.

2. Provide an integer n and a tuple (a, b) of length 2 containing two numeric values (where 𝑎 < 𝑏).
In this case, all parameters are assumed to be uniformly distributed over the interval [𝑎, 𝑏].

3. Provide an integer n and a function that takes a single numeric input in the interval [0, 1] and maps
it to the parameter space. In this case, all parameters are assumed to follow the provided Probability
Point Function.

4. Provide a list of tuples of length 2 containing numeric values (as above, the first number must smaller
than the second number). The design then assumes that the number of parameters is the length of the
list, and each parameter follows a uniform distribution with the bounds given by the respective tuple
in the given list.

5. Provide a list of functions taking a single input (as above, each function must map the interval [0, 1]
to the parameter space). The number of parameters in the design is the length of the list, and the given
PPF functions define the parameter space for each input.

More concretely, if one input parameter is given, you may initilize the class in any of the following ways:

Parameters n_parameters (int) – Integer specifying the number of parameters (must be
positive). The design will sample each parameter over the interval [0, 1]

or

Parameters bounds_list (list) – List of tuples containing two numeric values, each of
which has the smaller number first. Each parameter then takes a uniform distribution with
bounds given by each tuple.

or

Parameters ppf_list (list) – List of functions or other callable, each of which accepts one
argument and maps the interval [0, 1] to the parameter space. Each parameter follows the
distribution given by the respective PPF function.

and if two input parameters are given:

Parameters

• n_parameters (int) – Integer specifying the number of parameters (must be positive).
The design will sample each parameter over the interval [0, 1]
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• bounds (tuple) – Tuple or other iterable containing two numeric values, where the
smaller number must come first. Each parameter then takes a uniform distribution with
bounds given by the numbers provided in the tuple.

or

Parameters

• n_parameters (int) – Integer specifying the number of parameters (must be positive).
The design will sample each parameter over the interval [0, 1]

• ppf (function) – Function or other callable, which accepts one argument and maps the
interval [0, 1] to the parameter space. Each parameter follows the distribution given by the
PPF function.

The scipy.stats package provides implementations of a wide range of distributions, with pre-defined
PPF functions. See the Scipy user manual for more details. Note that in order to get a compatible PPF
function that only takes a single input, you will need to set any parameters needed to define the distribution.

Internally, the class defines any PPF functions based on the input data and collects all of the PPF functions
in a list. The class also contains information on the method used to draw samples from the design.

get_method()
Returns the method used to draw samples from the design

This method returns the method used to draw samples from the experimental design. The base class
does not implement a method, so if you try to call this on the base class the code will raise a
NotImplementedError. When deriving new designs from the base class, the method should be set
when calling the __init__ method.

Returns Method used to draw samples from the design.

Return type str

get_n_parameters()
Returns number of parameters in the experimental design

This method returns the number of parameters in the experimental design. This is set when initializing the
object, an cannot be modified.

Returns Number of parameters in the experimental design.

Return type int

sample(n_samples)
Draw parameter samples from the experimental design

This method implements drawing parameter samples from the experimental design. The method does this
by calling the _draw_samples method to obtain samples from the [0, 1]𝑛 hypercube, where 𝑛 is the
number of parameters. The sample``method then transforms these samples drawn
from the low level method to the actual parameter values using the PPF
functions provided when initilizing the object. Note that this method
also checks that all parameter values are finite; if any ``NaN values are
returned, an error will be raised.

Note that by implementing the sampling in this way, modifications to the method to draw samples using
a different protocol only needs to change the _draw_samples method. This makes it simpler to define
new designs, as only a single method needs to be altered.

Parameters n_samples (int) – Number of samples to be drawn from the design (must be a
positive integer)
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Returns Samples drawn from the design parameter space as a numpy array with shape
(n_samples, n_parameters)

Return type ndarray
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CHAPTER 6

The LatinHypercubeDesign Class

Class representing a one-shot design of experiments with uncorrelated parameters using Latin Hypercube Sampling

This class provides an implementation for a class for designing experiments to sample the parameter space of a
complex model using Latin Hypercube sampling. The parameter space can be specified in a variety of ways, but
essentially the user must provide a Probability Point Function (PPF, or inverse of the Cumulative Distribution Function)
for each input parameter. Each PPF function takes a single numeric input and maps from the interval [0, 1] to the
desired parameter distribution value for a given parameter, and each parameter has a separate function describing its
distribution. Note that this makes the assumption of no correlations between any of the parameter values (a future
version may implement an experimental design where there are such parameter correlations). Once the design is
initialized, a desired number of samples can be drawn from the design, returning an array holding the desired number
of samples from the parameter space.

Internally, the class holds the set of PPFs for all of the parameter values, and samples are drawn by calling the sample
method. To draw the samples, the _draw_samples is used to generate a series of points in the [0, 1]𝑛 hypercube
using Latin Hypercube sampling, where 𝑛 is the number of paramters. This set of samples from the Latin Hypercube
is then mapped to the parameter space using the given PPF functions.

Unlike Monte Carlo sampling, Latin Hypercube designs attempt to sample more uniformly from the parameter space.
Latin Hypercube sampling ensures that each sample is drawn from a different part of the space for each parameter. For
example, if four samples are drawn, then for each parameter, one sample is guaranteed to be drawn from each quartile
of the distribution. This ensures a more uniform sampling when compared on Monte Carlo sampling, but requires
slightly more computation to generate the samples. Note however, that for very large numbers of parameters, Latin
Hypercubes still may not sample very efficiently. This is due to the fact that the size of the parameter space grows
exponentially with the number of dimensions, so a fixed number of samples will sample the space more poorly as the
number of parameters increases.

class mogp_emulator.ExperimentalDesign.LatinHypercubeDesign(*args)
Class representing a one-shot design of experiments with uncorrelated parameters using Latin Hypercube Sam-
pling

This class provides an implementation for a class for designing experiments to sample the parameter space
of a complex model using Latin Hypercube sampling. The parameter space can be specified in a variety of
ways, but essentially the user must provide a Probability Point Function (PPF, or inverse of the Cumulative
Distribution Function) for each input parameter. Each PPF function takes a single numeric input and maps from
the interval [0, 1] to the desired parameter distribution value for a given parameter, and each parameter has a
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separate function describing its distribution. Note that this makes the assumption of no correlations between
any of the parameter values (a future version may implement an experimental design where there are such
parameter correlations). Once the design is initialized, a desired number of samples can be drawn from the
design, returning an array holding the desired number of samples from the parameter space.

Internally, the class holds the set of PPFs for all of the parameter values, and samples are drawn by calling the
sample method. To draw the samples, the _draw_samples is used to generate a series of points in the
[0, 1]𝑛 hypercube using Latin Hypercube sampling, where 𝑛 is the number of paramters. This set of samples
from the Latin Hypercube is then mapped to the parameter space using the given PPF functions.

Unlike Monte Carlo sampling, Latin Hypercube designs attempt to sample more uniformly from the parameter
space. Latin Hypercube sampling ensures that each sample is drawn from a different part of the space for each
parameter. For example, if four samples are drawn, then for each parameter, one sample is guaranteed to be
drawn from each quartile of the distribution. This ensures a more uniform sampling when compared on Monte
Carlo sampling, but requires slightly more computation to generate the samples. Note however, that for very
large numbers of parameters, Latin Hypercubes still may not sample very efficiently. This is due to the fact
that the size of the parameter space grows exponentially with the number of dimensions, so a fixed number of
samples will sample the space more poorly as the number of parameters increases.

__init__(*args)
Create a new instance of a Latin Hypercube experimental design

Creates a new instance of a Latin Hypercube design of experiments, which draws samples from the pa-
rameter space of a complex model in a more uniform fashion when compared to random Monte Carlo
sampling. It can be used to generate data for a Gaussian Process emulator to fit the outputs of the complex
model. Because the samples are drawn more uniformly than in Monte Carlo sampling, these designs may
perform better in high dimensional parameter spaces.

The experimental design can be initialized in several ways depending on the arguments provided, ranging
from the simplest to the most complicated.

1. Provide an integer n indicating the number of input parameters. If this is used to create an instance, it
is assumed that all parameters are unformly distributed over the 𝑛-dimensional hypercube.

2. Provide an integer n and a tuple (a, b) of length 2 containing two numeric values (where 𝑎 < 𝑏).
In this case, all parameters are assumed to be uniformly distributed over the interval [𝑎, 𝑏].

3. Provide an integer n and a function that takes a single numeric input in the interval [0, 1] and maps
it to the parameter space. In this case, all parameters are assumed to follow the provided Probability
Point Function.

4. Provide a list of tuples of length 2 containing numeric values (as above, the first number must smaller
than the second number). The design then assumes that the number of parameters is the length of the
list, and each parameter follows a uniform distribution with the bounds given by the respective tuple
in the given list.

5. Provide a list of functions taking a single input (as above, each function must map the interval [0, 1]
to the parameter space). The number of parameters in the design is the length of the list, and the given
PPF functions define the parameter space for each input.

More concretely, if one input parameter is given, you may initilize the class in any of the following ways:

Parameters n_parameters (int) – Integer specifying the number of parameters (must be
positive). The design will sample each parameter over the interval [0, 1]

or

Parameters bounds_list (list) – List of tuples containing two numeric values, each of
which has the smaller number first. Each parameter then takes a uniform distribution with
bounds given by each tuple.
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or

Parameters ppf_list (list) – List of functions or other callable, each of which accepts one
argument and maps the interval [0, 1] to the parameter space. Each parameter follows the
distribution given by the respective PPF function.

and if two input parameters are given:

Parameters

• n_parameters (int) – Integer specifying the number of parameters (must be positive).
The design will sample each parameter over the interval [0, 1]

• bounds (tuple) – Tuple or other iterable containing two numeric values, where the
smaller number must come first. Each parameter then takes a uniform distribution with
bounds given by the numbers provided in the tuple.

or

Parameters

• n_parameters (int) – Integer specifying the number of parameters (must be positive).
The design will sample each parameter over the interval [0, 1]

• ppf (function) – Function or other callable, which accepts one argument and maps the
interval [0, 1] to the parameter space. Each parameter follows the distribution given by the
PPF function.

The scipy.stats package provides implementations of a wide range of distributions, with pre-defined
PPF functions. See the Scipy user manual for more details. Note that in order to get a compatible PPF
function that only takes a single input, you will need to set any parameters needed to define the distribution.

Internally, the class defines any PPF functions based on the input data and collects all of the PPF functions
in a list. The class also contains information on the method used to draw samples from the design.

get_method()
Returns the method used to draw samples from the design

This method returns the method used to draw samples from the experimental design. The base class
does not implement a method, so if you try to call this on the base class the code will raise a
NotImplementedError. When deriving new designs from the base class, the method should be set
when calling the __init__ method.

Returns Method used to draw samples from the design.

Return type str

get_n_parameters()
Returns number of parameters in the experimental design

This method returns the number of parameters in the experimental design. This is set when initializing the
object, an cannot be modified.

Returns Number of parameters in the experimental design.

Return type int

sample(n_samples)
Draw parameter samples from the experimental design

This method implements drawing parameter samples from the experimental design. The method does this
by calling the _draw_samples method to obtain samples from the [0, 1]𝑛 hypercube, where 𝑛 is the
number of parameters. The sample``method then transforms these samples drawn
from the low level method to the actual parameter values using the PPF
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functions provided when initilizing the object. Note that this method
also checks that all parameter values are finite; if any ``NaN values are
returned, an error will be raised.

Note that by implementing the sampling in this way, modifications to the method to draw samples using
a different protocol only needs to change the _draw_samples method. This makes it simpler to define
new designs, as only a single method needs to be altered.

Parameters n_samples (int) – Number of samples to be drawn from the design (must be a
positive integer)

Returns Samples drawn from the design parameter space as a numpy array with shape
(n_samples, n_parameters)

Return type ndarray
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CHAPTER 7

The SequentialDesign Class

Base class representing a sequential experimental design

This class provides the base implementation of a class for designing experiments sequentially. This means that rather
than picking all simulation points in a single step, the points are selected one by one, taking into account the informa-
tion obtained by determining the true parameter value at each design point when selecting the next one. Sequential
designs can be very useful when running expensive, high-dimensional simulations to ensure that a limited computa-
tional budget is used effectvely.

Instead of choosing all points at once, which is the case in a one-shot design, a sequential design does some additional
computation work at each step to more carefully choose the next point. This means that sequential designs are better
suited for very expensive simulations, where the additional cost of choosing the next point is small compared to the
overall computational cost of running the simulations.

A sequential design is built on top of a base design (which must be a subclass of the ExperimentalDesign class.
In addition to the base design, the class must contain information on how many points are used in the initial design
(i.e. the number of starting points used before starting the sequential steps in the design) and the number of candidate
points that are considered during each iteration. Optionally, a function for evaluating the actual simulation can be
optionally bound to the class instance, which allows the entire design process to be automated. If such a function
is not provided, then the steps to run the design must be carried out manually, with the evaluated simulation values
provided to the class at the end of each simulation in order to determine the next point.

To use the base class to create an experimental design, a new subclass must be created that provides a method
_eval_metric, which considers all candidate points and returns the index of the best candidate. Otherwise, all
other code provided here allows for a generic sequential design to be easily run and managed.

class mogp_emulator.SequentialDesign.SequentialDesign(base_design, f=None,
n_samples=None, n_init=10,
n_cand=50)

Base class representing a sequential experimental design

This class provides the base implementation of a class for designing experiments sequentially. This means that
rather than picking all simulation points in a single step, the points are selected one by one, taking into account
the information obtained by determining the true parameter value at each design point when selecting the next
one. Sequential designs can be very useful when running expensive, high-dimensional simulations to ensure
that a limited computational budget is used effectvely.
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Instead of choosing all points at once, which is the case in a one-shot design, a sequential design does some
additional computation work at each step to more carefully choose the next point. This means that sequential
designs are better suited for very expensive simulations, where the additional cost of choosing the next point is
small compared to the overall computational cost of running the simulations.

A sequential design is built on top of a base design (which must be a subclass of the ExperimentalDesign
class. In addition to the base design, the class must contain information on how many points are used in the
initial design (i.e. the number of starting points used before starting the sequential steps in the design) and the
number of candidate points that are considered during each iteration. Optionally, a function for evaluating the
actual simulation can be optionally bound to the class instance, which allows the entire design process to be
automated. If such a function is not provided, then the steps to run the design must be carried out manually, with
the evaluated simulation values provided to the class at the end of each simulation in order to determine the next
point.

To use the base class to create an experimental design, a new subclass must be created that provides a method
_eval_metric, which considers all candidate points and returns the index of the best candidate. Otherwise,
all other code provided here allows for a generic sequential design to be easily run and managed.

__init__(base_design, f=None, n_samples=None, n_init=10, n_cand=50)
Create a new instance of a sequential experimental design

Creates a new instance of a sequential experimental design, which sequentially chooses points to be eval-
uated from a complex simulation function. It is often used for expensive computational models, where the
cost of running a single evaluation is large and must be done in series due to computational limitations, and
thus some additional computation done at each step to select new points is small compared to the overall
cost of running a single simulation.

Sequential designs require specifying a base design using a subclass of ExperimentalDesign as well
as information on the number of points to use in each step in the design process. Additionally, the function
to evaluated can be bound to the class to allow automatic evaluation of the function at each step.

Parameters

• base_design (ExperimentalDesign) – Base one-shot experimental design (must
be a subclass of ExperimentalDesign). This contains the information on the param-
eter space to be sampled.

• f (function or other callable) – Function to be evaluated for the design. Must
take all parameter values as a single input array and return a single float or an array of
length 1

• n_samples (int or None) – Number of sequential design points to be drawn. If
specified, this must be a non-negative integer. Note that this is in addition to the number of
initial points, meaning that the total design size will be n_samples + n_init. This
can also be specified when running the full design. This parameter is optional, and defaults
to None (meaning the number of samples is set when running the design, or that samples
will be added manually).

• n_init (int) – Number of points in the inital design before the sequential steps begin.
Must be a positive integer. Optional, default value is 10.

• n_cand – Number of candidates to consider at each sequential design step. Must be a
positive integer. Optional, default value is 50.

generate_initial_design()
Create initial design

Method to set the initial design inputs. Generates the desired number of points for the initial design by
drawing from the base design. Method sets the inputs attribute of the SequentialDesign instance,
but also returns the initial design as a numpy array if the simulations are to be run manually. This method
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can be run repeatedly to draw different initial designs if the initial target values have not been set, but once
the targets have been set the method will not overwrite them to prevent corruption of the design.

Returns Initial design points, a 2D numpy array with shape (n_init, n_parameters)

Return type ndarray

get_base_design()
Get type of base design

Returns the type of the base design. The base design must be a subclass of ExperimentalDesign, but
any one-shot design method can be used to generate the initial design and the candidates.

Returns Base design type as a string

Return type str

get_batch_points(n_points)
Batch version of get_next_point for a Sequential Design

This method returns a batch of design points to run from a Sequential Design. This is useful if simulations
can be run in parallel, which speeds up the ability to generate designs efficiently. The method simply calls
get_next_point the required number of times, but rather than using the true value of the simulation it
instead substitutes the predicted value that is method-specific. This can be implemented in a subclass by
defining the method _estimate_next_target.

Parameters n_points (int) – Size of batch to generate for the next set of simulation points.
This parameter determines the shape of the output array. Must be a positive integer.

Returns Set of batch points chosen using the batch version of the design as a numpy array with
shape (n_points, n_parameters)

Return type ndarray

get_candidates()
Get current candidate design input points

Returns a numpy array holding the current candidate design points. The array is 2D and has shape
(n_cand, n_parameters). It always has the same size once it is initialized, but the values will
change acros iterations as new candidate points are considered at each iteration.

Returns Current value of the candidate design inputs

Return type ndarray

get_current_iteration()
Get number of current iteration in the experimental design

Returns the current iteration during the sequential design process. This is mostly useful if the sequential
design is being updated manually to know the current iteration.

Returns Current iteration number

Return type int

get_inputs()
Get current design input points

Returns a numpy array holding the current design points. The array is 2D and has shape
(current_iteration, n_parameters) (i.e. it is resized after each iteration when a new design
point is chosen).

Returns Current value of the design inputs

Return type ndarray
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get_n_cand()
Get number of candidate design points

Returns the number of candidate design points used in each sequential design step. Candidates are re-
drawn at each step, so this number of points will be drawn each time and all points will be considered at
each iteration.

Returns Number of candidate design points

Return type int

get_n_init()
Get number of initial design points

Returns the number of initial design points used before beginning the sequential design steps. Note that
this means that the total number of samples to be drawn for the design is n_init + n_samples.

Returns Number of initial design points

Return type int

get_n_parameters()
Get number of parameters in design

Returns the number of parameters in the design (note that this is specified in the base design that must be
provided when initializing the class instance).

Returns Number of parameters in the design

Return type int

get_n_samples()
Get number of sequential design points

Returns the number of sequential design points used in the sequential design steps. This parameter can be
None to indicate that the number of samples will be specified when running the design, or that the samples
will be updated manually. Note that the total number of samples to be drawn for the design is n_init +
n_samples.

Returns Number of sequential design points

Return type int

get_next_point()
Evaluate candidates to determine next point

Public method for determining the next point in the design. Internally, it checks that the inputs and target
arrays are as expected for correctly drawing a new point, generates prospective candidates, and then evalu-
ates them using the desired metric in order to select the best one. It updates the inputs array and returns
the next point to be evaluated as a 1D numpy array of length n_parameters.

Returns Next design point, a 1D numpy array of length n_parameters

Return type ndarray

get_targets()
Get current design target points

Returns a numpy array holding the current target points. The array is 1D and has shape
(current_iteration,) (i.e. it is resized after each iteration when a new target point is added).
Note that simulation outputs must be a single number, so if considering a simulation has multiple outputs,
the user must decide how to combine them to form the relevant target value for deciding which point to
simulate next.

Returns Current value of the target inputs
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Return type ndarray

has_function()
Determines if class contains a function for running the simulator

This method checks to see if a function has been provided for running the simulation.

Returns Whether or not the design has a bound function for evaluting the simulation.

Return type bool

load_design(filename)
Load previously saved sequential design

Loads a previously saved sequential design from file. Loads the arrays for inputs, targets, and
candidates from file and sets other internal data to be consistent. It performs a few checks for con-
sistency to ensure that the loaded design is compatible with the selected parameters, however, it does not
completely check everything for consistency (in particular, it does not make any attempt to ensure that the
exact base design or function are identical to what was previously used). It is up to the user to ensure that
these are consistent with the previous instance of the design.

Parameters filename (str or file) – Filename or file object from which the design will
be loaded

Returns None

run_initial_design()
Run initial design

Method to run the initial design by generating the initial design, evaluating the function on all design
points, and setting the target values. Note that this requires having a bound function to the class in order
to evaluate the design points internally. It is a shortcut to running generate_initial_design,
evaluating the initial design points, and then using set_initial_targets to set the target values,
with some additional checks along the way.

If the initial design has already been fully run, this method will raise an error as the method to generate the
initial design checks this prior to overwriting the initial targets. Note also that this method checks that the
outputs of the bound function match up with the expected array sizes and that all outputs are finite before
updating the initial targets.

Returns None

Return type None

run_next_point()
Perform one iteration of the sequential design process

Method for performing an iteration of the sequential design process. This is a shortcut for generating and
evaluating the candidates to find the best next design point, evaluating the function on the next point, and
then updating the targets array with the value. This requires a function be bound to the class instance
to automatically run the simulation. This will also automatically update the current_iteration
attribute, which can be used to determine the number of sequential design steps that have been run.

Returns None

Return type None

run_sequential_design(n_samples=None)
Run the entire sequential design

Method to run all steps of the sequential design process. Note that the class instance must have a bound
function for evaluating the design points to run all steps automatically. If such a method is not provided,
the design steps must be run manually.
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The desired number of samples to be drawn can either be specified when initializing the class instance or
when calling this method. If a number of samples is provided on both occasions, then the number provided
when calling run_sequential_design is used.

Internally, this method is a wrapper to run_initial_design and then calling run_next_point
a total of n_samples times. Note that this means that the total number of design points is n_init +
n_samples.

Parameters n_samples (int or None) – Number of sequential design steps to be run.
Optional if the number was specified upon initialization. Default is None (default to number
set when initializing). If numbers are provided on both occasions, the number set here is
used. If a number is provided, must be non-negative.

Returns None

Return type None

save_design(filename)
Save current state of the sequential design

Saves the current state of the sequential design by writing the current values of inputs, targets, and
candidates to file as a .npz file. To re-load a saved design, use the load_design method.

Note that this method only dumps the arrays holding the inputs, targets, and candidates to a .npz file. It
does not ensure that the function or base design are consistent, so it is up to the user to ensure that the new
design parameters are the same as the parameters for the old one.

Parameters filename (str or file) – Filename or file object where design will be saved

Returns None

set_batch_targets(new_targets)
Batch version of set_next_target for a Sequential Design

This method updates the targets array for a batch set of simulations. The input array must
have shape (n_points,), where n_points is the number of points selected when calling
get_batch_points. Disagreement between these two values will result in an error.

Parameters new_targets (ndarray) – Array holding results from the simulations.
Must be an array of shape (n_points,), where n_points is set when calling
get_batch_points

Returns None

set_initial_targets(targets)
Set initial design target values

Method to set the initial design targets. Generates the desired number of points for the initial design by
drawing from the base design. Method sets the inputs attribute of the SequentialDesign instance,
but also returns the initial design as a numpy array if the simulations are to be run manually. This method
can be run repeatedly to draw different initial designs if the initial target values have not been set, but once
the targets have been set the method will not overwrite them to prevent corruption of the design.

Target values must be an array with length (n_init,), with values obtained by running the initial design
through the simulation. Note that this means the initial design must be created prior to running this method
– if this method is called prior to generate_initial_design, the code will raise an error.

Parameters targets (ndarray) – Initial value of targets, must be a 1D numpy array with
shape (n_init,)

Returns None

Return type None
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set_next_target(target)
Set value of next target

Updates the target array with the correct value (from running the actual simulation) of the latest design
point determined using get_next_point. The target input must be a float or an array of length 1. The
code internally checks the inputs and targets for any problems that may have occurred in updating them
correctly, and if all is well then updates the target array and increments the number of iterations. If the
design has not been correctly initialized, or get_next_point has not been previously run, this method
will raise an error.

Parameters target (float or length 1 array) – New target value found from eval-
uating the simulation on the latest design point found from the get_next_point method.

Returns None

Return type None
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CHAPTER 8

The MICEDesign Class

Class representing a Mutual Information for Computer Experiments (MICE) sequential experimental design

This class provides an implementation of the MICE algorithm, which uses Mutual Information as the criterion for
selecting new points in a sequential design. The idea in MICE is to select design points based on the point that
provides the most information on the function values in the entire design space. This is a straightforward application
of a sequential design procedure, though the class requires a few additional parameters in order to compute the MICE
criteria.

These additional parameters are nugget parameters provided to the Gaussian Process fit to smooth the predictions
when evaluating the Mutual Information criteria. Essentially, since experimental design often requires sampling from
a high dimensional space, this cannot be done in a way that guarantees that all candidate points are equally spaced.
The Mutual Information criterion is sensitive to how these candidate points are distributed in space, so the nugget
parameter provides some smoothing that makes the criterion less dependent on the distribution of the candidate points.
Typical values of the smoothing nugget parameters (nugget_s in this implementation) are 1, though this may depend
on the application.

Other than the smoothing parameters, the implementation follows the base procedure for a sequential design. The
implementation adds methods for querying the nugget parameters and an additional helper function for computing the
Mutual Information criterion, but other methods are identical.

class mogp_emulator.SequentialDesign.MICEDesign(base_design, f=None,
n_samples=None, n_init=10,
n_cand=50, nugget=None,
nugget_s=1.0)

Class representing a Mutual Information for Computer Experiments (MICE) sequential experimental design

This class provides an implementation of the MICE algorithm, which uses Mutual Information as the criterion
for selecting new points in a sequential design. The idea in MICE is to select design points based on the point
that provides the most information on the function values in the entire design space. This is a straightforward
application of a sequential design procedure, though the class requires a few additional parameters in order to
compute the MICE criteria.

These additional parameters are nugget parameters provided to the Gaussian Process fit to smooth the predictions
when evaluating the Mutual Information criteria. Essentially, since experimental design often requires sampling
from a high dimensional space, this cannot be done in a way that guarantees that all candidate points are equally
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spaced. The Mutual Information criterion is sensitive to how these candidate points are distributed in space, so
the nugget parameter provides some smoothing that makes the criterion less dependent on the distribution of the
candidate points. Typical values of the smoothing nugget parameters (nugget_s in this implementation) are
1, though this may depend on the application.

Other than the smoothing parameters, the implementation follows the base procedure for a sequential design.
The implementation adds methods for querying the nugget parameters and an additional helper function for
computing the Mutual Information criterion, but other methods are identical.

__init__(base_design, f=None, n_samples=None, n_init=10, n_cand=50, nugget=None,
nugget_s=1.0)

Create new instance of a MICE sequential design

Method to initialize a new MICE design. Parameters are largely the same as for the base
SequentialDesign class, with a few additional nugget parameters for computing the Mutual Infor-
mation criterion. A base design must be provided (must be a subclass of the ExperimentalDesign
class), plus optionally a function to be evaluated in the design. Additional parameters include the num-
ber of samples, the number of initial design points, the number of candidate points, the nugget parameter
for the base GP, and the smoothing nugget parameter for smoothing the uncertainty predictions on the
candidate design points. Note that the total number of design points is n_init + n_samples.

Parameters

• base_design (ExperimentalDesign) – Base one-shot experimental design (must
be a subclass of ExperimentalDesign). This contains the information on the param-
eter space to be sampled.

• f (function or other callable) – Function to be evaluated for the design. Must
take all parameter values as a single input array and return a single float or an array of
length 1

• n_samples (int or None) – Number of sequential design points to be drawn. If
specified, this must be a positive integer. Note that this is in addition to the number of
initial points, meaning that the total design size will be n_samples + n_init. This
can also be specified when running the full design. This parameter is optional, and defaults
to None (meaning the number of samples is set when running the design, or that samples
will be added manually).

• n_init (int) – Number of points in the inital design before the sequential steps begin.
Must be a positive integer. Optional, default value is 10.

• n_cand – Number of candidates to consider at each sequential design step. Must be a
positive integer. Optional, default value is 50.

• nugget (float or None) – Nugget parameter for base GP predictions. Must be a
non-negative float or None, where None indicates that the nugget parameter is selected
adaptively. Optional, default value is None.

• nugget_s (float) – Smoothing nugget parameter for smoothing the predictions on the
candidate space. Must be a non-negative float. Default value is 1.

generate_initial_design()
Create initial design

Method to set the initial design inputs. Generates the desired number of points for the initial design by
drawing from the base design. Method sets the inputs attribute of the SequentialDesign instance,
but also returns the initial design as a numpy array if the simulations are to be run manually. This method
can be run repeatedly to draw different initial designs if the initial target values have not been set, but once
the targets have been set the method will not overwrite them to prevent corruption of the design.

Returns Initial design points, a 2D numpy array with shape (n_init, n_parameters)
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Return type ndarray

get_base_design()
Get type of base design

Returns the type of the base design. The base design must be a subclass of ExperimentalDesign, but
any one-shot design method can be used to generate the initial design and the candidates.

Returns Base design type as a string

Return type str

get_batch_points(n_points)
Batch version of get_next_point for a Sequential Design

This method returns a batch of design points to run from a Sequential Design. This is useful if simulations
can be run in parallel, which speeds up the ability to generate designs efficiently. The method simply calls
get_next_point the required number of times, but rather than using the true value of the simulation it
instead substitutes the predicted value that is method-specific. This can be implemented in a subclass by
defining the method _estimate_next_target.

Parameters n_points (int) – Size of batch to generate for the next set of simulation points.
This parameter determines the shape of the output array. Must be a positive integer.

Returns Set of batch points chosen using the batch version of the design as a numpy array with
shape (n_points, n_parameters)

Return type ndarray

get_candidates()
Get current candidate design input points

Returns a numpy array holding the current candidate design points. The array is 2D and has shape
(n_cand, n_parameters). It always has the same size once it is initialized, but the values will
change acros iterations as new candidate points are considered at each iteration.

Returns Current value of the candidate design inputs

Return type ndarray

get_current_iteration()
Get number of current iteration in the experimental design

Returns the current iteration during the sequential design process. This is mostly useful if the sequential
design is being updated manually to know the current iteration.

Returns Current iteration number

Return type int

get_inputs()
Get current design input points

Returns a numpy array holding the current design points. The array is 2D and has shape
(current_iteration, n_parameters) (i.e. it is resized after each iteration when a new design
point is chosen).

Returns Current value of the design inputs

Return type ndarray

get_n_cand()
Get number of candidate design points
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Returns the number of candidate design points used in each sequential design step. Candidates are re-
drawn at each step, so this number of points will be drawn each time and all points will be considered at
each iteration.

Returns Number of candidate design points

Return type int

get_n_init()
Get number of initial design points

Returns the number of initial design points used before beginning the sequential design steps. Note that
this means that the total number of samples to be drawn for the design is n_init + n_samples.

Returns Number of initial design points

Return type int

get_n_parameters()
Get number of parameters in design

Returns the number of parameters in the design (note that this is specified in the base design that must be
provided when initializing the class instance).

Returns Number of parameters in the design

Return type int

get_n_samples()
Get number of sequential design points

Returns the number of sequential design points used in the sequential design steps. This parameter can be
None to indicate that the number of samples will be specified when running the design, or that the samples
will be updated manually. Note that the total number of samples to be drawn for the design is n_init +
n_samples.

Returns Number of sequential design points

Return type int

get_next_point()
Evaluate candidates to determine next point

Public method for determining the next point in the design. Internally, it checks that the inputs and target
arrays are as expected for correctly drawing a new point, generates prospective candidates, and then evalu-
ates them using the desired metric in order to select the best one. It updates the inputs array and returns
the next point to be evaluated as a 1D numpy array of length n_parameters.

Returns Next design point, a 1D numpy array of length n_parameters

Return type ndarray

get_nugget()
Get value of nugget parameter for base GP

Returns the nugget value for the base GP (used to actually fit the inputs to targets). Can be a float or None
(meaning fitting will adaptively add noise to stabilize matrix inversion as needed).

Returns Nugget parameter, can be a float or None for adaptive noise addition.

Return type float or None

get_nugget_s()
Get value of smoothing nugget parameter
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Returns the value of the smoothing nugget parameter for the GP used to evaluate the mutual information
criterion. This GP examines the correlation between a candidate design point and the other candidate
points, which requires smoothing to ensure that the correlation measure is not biased by the distribution
of the candidate points in space. This parameter must be a nonnegative float (typical values used are 1,
though this may depend on the application).

Returns Nugget parameter for smoothing predictions from candidate points made on a candidate
point. Typical values are 1.

Return type float

get_targets()
Get current design target points

Returns a numpy array holding the current target points. The array is 1D and has shape
(current_iteration,) (i.e. it is resized after each iteration when a new target point is added).
Note that simulation outputs must be a single number, so if considering a simulation has multiple outputs,
the user must decide how to combine them to form the relevant target value for deciding which point to
simulate next.

Returns Current value of the target inputs

Return type ndarray

has_function()
Determines if class contains a function for running the simulator

This method checks to see if a function has been provided for running the simulation.

Returns Whether or not the design has a bound function for evaluting the simulation.

Return type bool

load_design(filename)
Load previously saved sequential design

Loads a previously saved sequential design from file. Loads the arrays for inputs, targets, and
candidates from file and sets other internal data to be consistent. It performs a few checks for con-
sistency to ensure that the loaded design is compatible with the selected parameters, however, it does not
completely check everything for consistency (in particular, it does not make any attempt to ensure that the
exact base design or function are identical to what was previously used). It is up to the user to ensure that
these are consistent with the previous instance of the design.

Parameters filename (str or file) – Filename or file object from which the design will
be loaded

Returns None

run_initial_design()
Run initial design

Method to run the initial design by generating the initial design, evaluating the function on all design
points, and setting the target values. Note that this requires having a bound function to the class in order
to evaluate the design points internally. It is a shortcut to running generate_initial_design,
evaluating the initial design points, and then using set_initial_targets to set the target values,
with some additional checks along the way.

If the initial design has already been fully run, this method will raise an error as the method to generate the
initial design checks this prior to overwriting the initial targets. Note also that this method checks that the
outputs of the bound function match up with the expected array sizes and that all outputs are finite before
updating the initial targets.

Returns None
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Return type None

run_next_point()
Perform one iteration of the sequential design process

Method for performing an iteration of the sequential design process. This is a shortcut for generating and
evaluating the candidates to find the best next design point, evaluating the function on the next point, and
then updating the targets array with the value. This requires a function be bound to the class instance
to automatically run the simulation. This will also automatically update the current_iteration
attribute, which can be used to determine the number of sequential design steps that have been run.

Returns None

Return type None

run_sequential_design(n_samples=None)
Run the entire sequential design

Method to run all steps of the sequential design process. Note that the class instance must have a bound
function for evaluating the design points to run all steps automatically. If such a method is not provided,
the design steps must be run manually.

The desired number of samples to be drawn can either be specified when initializing the class instance or
when calling this method. If a number of samples is provided on both occasions, then the number provided
when calling run_sequential_design is used.

Internally, this method is a wrapper to run_initial_design and then calling run_next_point
a total of n_samples times. Note that this means that the total number of design points is n_init +
n_samples.

Parameters n_samples (int or None) – Number of sequential design steps to be run.
Optional if the number was specified upon initialization. Default is None (default to number
set when initializing). If numbers are provided on both occasions, the number set here is
used. If a number is provided, must be non-negative.

Returns None

Return type None

save_design(filename)
Save current state of the sequential design

Saves the current state of the sequential design by writing the current values of inputs, targets, and
candidates to file as a .npz file. To re-load a saved design, use the load_design method.

Note that this method only dumps the arrays holding the inputs, targets, and candidates to a .npz file. It
does not ensure that the function or base design are consistent, so it is up to the user to ensure that the new
design parameters are the same as the parameters for the old one.

Parameters filename (str or file) – Filename or file object where design will be saved

Returns None

set_batch_targets(new_targets)
Batch version of set_next_target for a Sequential Design

This method updates the targets array for a batch set of simulations. The input array must
have shape (n_points,), where n_points is the number of points selected when calling
get_batch_points. Disagreement between these two values will result in an error.

Parameters new_targets (ndarray) – Array holding results from the simulations.
Must be an array of shape (n_points,), where n_points is set when calling
get_batch_points
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Returns None

set_initial_targets(targets)
Set initial design target values

Method to set the initial design targets. Generates the desired number of points for the initial design by
drawing from the base design. Method sets the inputs attribute of the SequentialDesign instance,
but also returns the initial design as a numpy array if the simulations are to be run manually. This method
can be run repeatedly to draw different initial designs if the initial target values have not been set, but once
the targets have been set the method will not overwrite them to prevent corruption of the design.

Target values must be an array with length (n_init,), with values obtained by running the initial design
through the simulation. Note that this means the initial design must be created prior to running this method
– if this method is called prior to generate_initial_design, the code will raise an error.

Parameters targets (ndarray) – Initial value of targets, must be a 1D numpy array with
shape (n_init,)

Returns None

Return type None

set_next_target(target)
Set value of next target

Updates the target array with the correct value (from running the actual simulation) of the latest design
point determined using get_next_point. The target input must be a float or an array of length 1. The
code internally checks the inputs and targets for any problems that may have occurred in updating them
correctly, and if all is well then updates the target array and increments the number of iterations. If the
design has not been correctly initialized, or get_next_point has not been previously run, this method
will raise an error.

Parameters target (float or length 1 array) – New target value found from eval-
uating the simulation on the latest design point found from the get_next_point method.

Returns None

Return type None
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CHAPTER 9

The MICEFastGP Class

Derived GaussianProcess class implementing the Woodbury matrix identity for fast predictions

This class implements a Gaussian Process that is used in the MICE Sequential Design. The GP is fit using all candidate
points from the sequential design, and the uses the Woodbury matrix identity to correct that fit to exclude the candidate
point in question. This reduces the cost of fitting the GP from O(n^3) to O(n^2), which can dramatically speed up
this process for large numbers of candidate points. This is mostly used for the particular application to the MICE
sequential design, but could potentially have other applications where many candidate points are to be considered one
at a time.

class mogp_emulator.SequentialDesign.MICEFastGP(*args)
Derived GaussianProcess class implementing the Woodbury matrix identity for fast predictions

This class implements a Gaussian Process that is used in the MICE Sequential Design. The GP is fit using
all candidate points from the sequential design, and the uses the Woodbury matrix identity to correct that fit to
exclude the candidate point in question. This reduces the cost of fitting the GP from O(n^3) to O(n^2), which can
dramatically speed up this process for large numbers of candidate points. This is mostly used for the particular
application to the MICE sequential design, but could potentially have other applications where many candidate
points are to be considered one at a time.

fast_predict(index)
Make a fast prediction using one input point to a fit GP

This method is used to correct a Gaussian Process fit to a set of candidate points to evaluate the uncer-
tainty at the candidate point. It is used in the MICE sequential design procedure to examine the mutual
information between candidate points by determining how well correlated the design point is in ques-
tion to the remainder of the candidates. It uses the Woodbury matrix identity to correct the existing GP
fit (which requires O(n^3) operations) using O(n^2) operations, speeding up the process significantly for
large candidate design sizes.

The method requires a fit GP, and the index of the input point that is to be excluded. The method then
corrects the GP fit and computes the uncertainty of the prediction on the excluded point returning the
uncertainty as a float.

Parameters index (int) – Index of input point to be excluded in the fit and to which the
prediction will be applied. Must be an integer with 0 <= index < n (where n is the number
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of target points in the fit GP, or the number of candidate points when applied to the MICE
procedure).

Returns Uncertainty in the corrected fit applied to the given index point

Return type float
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CHAPTER 10

GP Emulator Benchmarks

10.1 Rosenbrock Function Benchmark

This benchmark performs convergence tests on a single emulator with variable numbers of input parameters. The
example is based on the Rosenbrock function (see https://www.sfu.ca/~ssurjano/rosen.html). This function can be
defined in an artibrary number of dimensions, so it provides a useful test for how emulators based on increasing
numbers of parameters perform as the size of the training data is varied. As the number of training points increases,
the prediction error and prediction variance should decrease. However, this will depend on the number of dimensions
in the function – in general, the size of the input space grows exponentially with the number of dimensions, while
the samples drawn here grow linearly with the number of dimensions. Thus, the higher dimensional emulators will
perform worse for the same number of samples per dimension.

10.2 Branin Function Benchmark

This benchmark performs convergence tests on multiple realizations of the 2D Branin function. Details of the 2D
Branin function can be found at https://www.sfu.ca/~ssurjano/branin.html. This particular version uses 8 realizations
of the Branin function, each with a different set of parameters. The code samples these 8 realizations simultaneously
using a spacefilling Latin Hypercube experimental design with a varying number of target points, and then tests the
convergence of the resulting emulators. As the number of targe points increases, the prediction error and prediction
variance should decrease.

(Note however that eventually, the predictions worsen once the number of target points becomes large enough that the
points become too densely sampled. In this case, the points become co-linear and the resulting covariance matrix is
singular and cannot be inverted. To avoid this problem, the code iteratively adds additional noise to the covariance
function to stabilize the inversion. However, this noise reduces the accuracy of the predictions. The values chosen for
this benchmark attempt to avoid this, but in some cases this still becomes a problem due to the inherent smoothness of
the squared exponential covariance function.)
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10.3 Tsunami Data Benchmark

This benchmark examines the performance of emulators fit in parallel to multiple targets. The benchmark uses a set
of tsunami simulations, where the inputs are 14 values of the seafloor displacement resulting from an earthquake,
and the outputs are tsunami wave heights at different spatial locations. This benchmark fits 8, 16, 32, and 64 output
points using 1, 2, 4, and 8 processes, and records the time required per emulator to perform the fitting. The actual
performance will depend on the specific machine and the number of cores available. Once the number of processes
exceeds the number of cores on the machine, the fitting time will increase, so the results will depend on the exact setup
used. For reference, tests on a quad core MacBook Pro found that the fitting took roughly 1 second per emulator on a
single core, with the time per emulator dropping by about a factor of 2 when 4 processes were used.
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