Multi-Output GP Emulator

Documentation
Release 0.6.0

Eric Daub

May 10, 2022

Introduction and Installation:

1 Overview 3
2 Installation 5
3 Tutorial 9
4 Details on the Method 17
5 Gaussian Process Demo (Python) 21
6 Gaussian Process Kernel Demos (Python) 25
7 Mutual Information for Computer Experiments (MICE) Demos 29
8 History Matching Demos 33
9 Kernel Dimension Reduction (KDR) Demos 37
10 Gaussian Process Demo (GPU) 39
11 Gaussian Process Demo (R) 41
12 Gaussian Process Demo with Small Sample Size 45
13 Uncertainty Quantification Methods 49
14 mogp_emulator Implementation Details 383
15 Benchmarks 481
16 Indices and tables 485
Bibliography 487
Python Module Index 489

Index 491

Multi-Output GP Emulator Documentation, Release 0.6.0

mogp_emulator is a Python package for fitting Gaussian Process Emulators to computer simulation results. The
code contains routines for fitting GP emulators to simulation results with a single or multiple target values, optimizing
hyperparameter values, and making predictions on unseen data. The library also implements experimental design,
dimension reduction, and calibration tools to enable modellers to understand complex computer simulations.

The following pages give a brief overview of the package, instructions for installation, and an end-to-end tutorial
describing a Uncertainty Quantification workflow using mogp_emulator. Further pages outline some additional
examples, more background details on the methods in the MUCM Toolkit, full implementation details, and some
included benchmarks.

Introduction and Installation: 1

Multi-Output GP Emulator Documentation, Release 0.6.0

2 Introduction and Installation:

CHAPTER 1

Overview

Computer simulations are frequently used in science to understand physical systems, but in practice it can be difficult
to understand their limitations and quantify the uncertainty associated with their outputs. This library provides a range
of tools to facilitate this process for domain experts that are not necessarily well-versed in uncertainty quantification
methods.

This page covers an overview of the workflow. For much more detail, see the Details on the Method section of the
introduction, or the Uncertainty Quantification Methods section.

1.1 UQ Basics

The UQ workflow here describes the process of understanding a complex simulator. The simulator here is as-
sumed to be a deterministic function mapping multiple inputs to one or more outputs with some general knowl-
edge about the input space. We would like to understand what inputs are reasonable given some observa-
tions about the world, and understand how uncertain we are about this knowledge. The inputs may not be
something that is physically observable, as they may be standing in for missing physics from the simulator.

Parameter space History Matching — ©lausible
Inputs

Experimental design GP Emulator

Simulator Data

ig. 17 The Uncertainty Quantification wor i € plausible inputs for a compiex simulator give
some data and a parameter space, we use an experlmental design to sample from the space, run those points througg
the simulator. To approximate the simulator, we fit a Gaussian Process Emulator to the simulator output. Then,
to explore the parameter space, we sample many, many times from the experimental design, query the emulator, and
determine the plausible inputs that are consistent with the data usine History Matching.

Multi-Output GP Emulator Documentation, Release 0.6.0

plore the entire space. Instead, we will train a surrogate model or emulator model that approximates the simulator
and efficiently estimates its value (plus an uncertainty). We will then query that model many times to explore the
input space.

Because the simulator is expensive to run, we would like to be judicious about how to sample from the space. This
requires designing an experiment to choose the points that are run to fit the surrogate model, referred to as an Exper-
imental Design. Once these points are run, the emulator can be fit and predictions made on arbitrary input points.
These predictions are compared to observations for a large number of points to examine the inputs space and see what
inputs are reasonable given the observations and what points can be excluded. This is a type of model calibration, and
the specific approach we use here is History Matching, which attempts to find the parts of the input space that are
plausible given the data and all uncertainties involved in the problem.

Next, we describe the Installation prodecure and provide an example Tutorial to illustrate how this process works.

4 Chapter 1. Overview

to

run

as
many
times
as
needed
to

ex-

CHAPTER 2

Installation

In most cases, the easiest way to install mogp_emulator is via pip, which should install the library and all of its
dependencies:

’pip install mogp-emulator

You can also use pip to install directly from the github repository using

’pip install git+https://github.com/alan-turing-institute/mogp-emulator

This will accomplish the same thing as the manual installation instructions below.

2.1 Manual Installation

To install the package manually, for instance to have access to a development version or to take part in active develop-
ment of the package, the following instructions can be used to install the package.

2.1.1 Download

You can download the code as a zipped archive from the Github repository. This will download all files on the master
branch, which can be unpacked and then used to install following the instructions below.

If you prefer to check out the Github repository, you can download the code using:

git clone https://github.com/alan-turing-institute/mogp-emulator/

This will clone the entire git history of the software and check out the master branch by default. The master
branch is the most stable version of the code, but will not have all features as the code is under active development.
The devel branch is the more actively developed branch, and all new features will be available here as they are
completed. All code in the devel branch is well tested and documented to the point that results can be trusted, but
may still have some minor bugs and issues. Any other branch is used to develop new features and should be considered

Multi-Output GP Emulator Documentation, Release 0.6.0

untested and experimental. Please get in touch with one of the team members if you are unsure if a particular feature
is available.

2.1.2 Requirements

The code requires Python 3.6 or later, and working Numpy and Scipy installations are required. You should be
able to install these packages using pip if you do not have them already available on your system. From the base
mogp_emulator directory, you can install all required packages using:

pip install -r requirements.txt

This will install the minimum requirements needed to use mogp_emulator. There are a few addditional packages
that are not required but can be useful (in particular, pat sy is used for parsing mean functions using R-style formulas,
so all R users are highly encouraged to install the optional dependencies). Installation of the optional dependencies
can be done via:

pip install -r requirements-optional.txt

2.1.3 Installation

Then to install the main code, run the following command:

python setup.py install

This will install the main code in the system Python installation. You may need adminstrative priveleges to install
the software itself, depending on your system configuration. However, any updates to the code cloned through the
github repository (particularly if you are using the devel branch, which is under more active development) will not be
reflected in the system installation using this method. If you would like to always have the most active development
version, install using:

python setup.py develop

This will insert symlinks to the repository files into the system Python installation so that files are updated whenever
there are changes to the code files.

2.2 Documentation

The code documentation is available on readthedocs. A current build of the master and devel branches should
always be available in HTML or PDF format.

To build the documentation yourself requires Sphinx, which can be installed using pip. This can also be done in
the docs directory using pip install -r requirements.txt. To build the documentatation, change to the
docs directory. There is a Makefile in the docs directory to facilitate building the documentation for you. To build
the HTML version, enter the following into the shell from the docs directory:

’make html

This will build the HTML version of the documentation. A standalone PDF version can be built, which requires a
standard LaTeX installation, via:

’make latexpdf

6 Chapter 2. Installation

https://mogp-emulator.readthedocs.io

Multi-Output GP Emulator Documentation, Release 0.6.0

In both cases, the documentation files can be found in the corresponding directories in the docs/_build directory.
Note that if these directories are not found on your system, you may need to create them in order for the build to finish
correctly. A version of the documentation can also be found at the link above on Read the Docs.

2.3 Testing the Installation

2.3.1 Unit Tests

mogp_emulator includes a full set of unit tests. To run the test suite, you will need to install the development
dependencies, which include pytest and pytest-cov to give coverage reports, which can be done in the main
mogp_emulator directory viapip install -r requirements-dev.txt. The pytest-cov package is
not required to run the test suite, but is useful if you are developing the code to determine test coverage.

The tests can be run from the base mogp_emulator directory or the mogp_emulator/tests directory by
entering pytest, which will run all tests and print out the results to the console. In the mogp_emulator/tests
directory, there is also a Make file that will run the tests for you. You can simply enter make tests into the shell.

2.3. Testing the Installation 7

Multi-Output GP Emulator Documentation, Release 0.6.0

8 Chapter 2. Installation

CHAPTER 3

Tutorial

Note: This tutorial requires Scipy version 1.4 or later to run the simulator.

This page includes an end-to-end example of using mogp_emulator to perform model calibration. We define a
simulator describing projectile motion with nonlinear drag, and then illustrate how to sample from the simulator, fit
a surrogate model, and explore the parameter space using history matching to obtain a plausible subset of the input
space.

3.1 Projectile Motion with Drag

In this example, we will explore projectile motion with drag. A projectile with a mass of 1 kg is fired at an angle of 45
degrees from horizontal and a height of 2 meters. The projectile experiences gravity and drag opposes the motion of the
projectile, with a force that is proportional to the squared velocity. For this example, we assume that we do not know
the initial velocity or the drag coefficient, but we do know that the projectile travelled 2 km (with a standard deviation
measurement error of 20 meters). We would like to determine what inputs could have resulted in this observation.

70 1 3.1.1 Equations
60 - of Mo-
tion
— 50 1
§’ - The equa-
- 40 .
c tions of
.% 30 - motion for
T the projec-
20 tile are as
10 ~
0 -

0 20 40 60 80 100 120 140 160
Horizontal position (m)

Fig. 1: Example simulation of projectile motion with drag for C = 0.01 kg/m and vg = 100 m/s
computed via numerical integration.

Multi-Output GP Emulator Documentation, Release 0.6.0

the distance travelled is the value of x when this occurs.

follows:
dv
m d: = —Cvgy[v2 + v2
dv
md—ty = —g — Cvy[v2 + 02
dz
> —w
dt *
dy
A
a Y
The initial
conditions
are

Vz0 = Vo/ V2

Uyo = Vo/ V2
x9g=0
Yyo=nh

This can be

integrated

in time until
y = 0, and

We include a Python implementation of this model in mogp_emulator/demos/projectile.py. This uses the
scipy.integrate function solve_1ivp to perform the numerical integration. The RHS derivative is defined in
£, and the stopping condition is defined in the event function. The simulator is then defined as a function taking
a single input (an array holding the two input parameters of the drag coefficient C' and the initial velocity vo) and
returning a single value, which is x at the end of the simulation.

import numpy as np

import scipy

from scipy.integrate import solve_ivp

define functions needed for simulator

def f(t, y, c):
"Compute RHS of system of differential equations,

check inputs and extract

assert len(y
assert c >=

vx = yl[0]
vy = yI[1]

) == 4
0.

calculate derivatives

dydt = np
dydt [0]
dydt[1] =
dydt [2]
dydt [3]

.zeros (4)

—CHVX*NP.sqrt (vXx*2 + vyxx2)

-9.8 — cxvy*np.sqrt (vx*+2 + vy**2)
VX

vy

returning vector derivative"

(continues on next page)

10

Chapter 3. Tutorial

Multi-Output GP Emulator Documentation, Release 0.6.0

(continued from previous page)

return dydt

def event(t, y, c):
"event to trigger end of integration"

assert len(y) == 4

)
assert c >= 0.
return y|[3]
now can define simulator
def simulator(x):

"simulator to solve ODE system for projectile motion with drag. returns distance,
—projectile travels"

unpack values

assert len(x) == 2
assert x[1] > 0.

c = 10.%x*x[0]
v0 = x[1]

set initial conditions
v0 = np.zeros(4)
y0[0] v0/np.sqgrt (2.)

yO0[1l] = vO/np.sqgrt(2.)
yO[3] = 2.

run simulation
results = solve_ivp(f, (0., 1.e8), y0, events=event, args = (c,))
return results.y_events[0][0][2]

function for printing out results

def print_results (inputs, predictions):
"convenience function for printing out results and computing mean square error"

print ("Target Point Predicted mean Actual Value")

print("-——-——————
;}777")

error = 0.

for pp, m in zip(inputs, predictions):

trueval = simulator (pp)
print (" {} {} {}".format (pp, m, simulator (pp)))
error += (trueval — m) **2
print ("Mean squared error: {}".format (np.sqrt (error)/len(predictions)))

3.1. Projectile Motion with Drag 11

Multi-Output GP Emulator Documentation, Release 0.6.0

3.1.2 Parameter Space

We are not sure what values of the parameters to use, so we must pick reasonable ranges. The velocity range might be
somewhere in the range of 0-1000 m/s, while the drag coefficient is much more uncertain. For this reason, we use a
logarithmic scale to represent the drag coeffient, with values ranging from 10~° to 10 kg/m. This will ensure that we
sample from a wide range of values to ensure that we understand the effect of this parameter on the simulation.

3.2 UQ Implementation

As described in Overview, Our analysis consists of three steps:
1. Drawing parameter values to run our simulator
2. Fitting a surrogate model to those points
3. Performing model calibration by sampling many points and comparing to the observations

We will describe each step and provide some code illustrating how the steps are done in mogp_emulator below.
The full example is provided in the file mogp_emulator/demos/tutorial.py, and we provide snippets here
to illustrate.

3.2.1 Experimental Design

For this example, we use a Latin Hypercube Design to sample from the parameter space. Latin Hypercubes attempt
to draw from all parts of the distribution, and for small numbers of samples are likely to outperform Monte Carlo
sampling.

To define a Latin Hypercube, we must give it the base distributions for all input parameters from which to draw
the samples. Because we would like our drag coefficient to be uniformly distributed on a log scale, and the initial
velocity to be uniformly distributed on a linear scale, we simply need to provide the upper and lower bounds of the
uniform distribution and the Python object will create the distributions for us. If we wanted to use a more complicated
distribution, we can pass scipy.stats Point Probability Functions (the inverse of the CDF) when constructing
the LatinHypercubeDesign object instead. However, in practice we often do not know much about the parameter
distributions, so uniform distributions are fairly common due to their simplicity.

To construct our experimental design and draw samples from it, we do the following:

import numpy as np
from projectile import simulator, print_results
import mogp_emulator

lhd = mogp_emulator.LatinHypercubeDesign([(-5., 1.), (0., 1000.)1)
n_simulations = 50

simulation_points lhd.sample (n_simulations)
simulation_output = np.array([simulator (p) for p in simulation_points])

This constructs an instance of LatinHypercubeDesign, and creates the underlying distributions by providing a list of
tuples. Each tuple gives the upper and lower bounds on the uniform distribution. Thus, the first tuple determines the
drag coefficient (recall that it is on a log scale, so this is defining the distribution on the exponent), and the second
determines the initial velocity.

Next, we determine that we want to run 50 simulations. We can get our simulation points by calling the sample
method of LatinHypercubeDesign, which is a numpy array of shape (n_simulations, 2). Thus, iterating over
the resulting object gives us the parameters for each of our simulations.

12 Chapter 3. Tutorial

Multi-Output GP Emulator Documentation, Release 0.6.0

We can then simply run our simulation in our Python script. However, for more complicated simulations, we may
need to save these values and then submit our jobs to a computer cluster to have the simulations run in a reasonable
amount of time.

3.2.2 Gaussian Process Emulator

Once we have our simulation points, we fit our surrogate model using the GaussianProcess class. Fitting this model
involves giving the GP object our inputs and our targets, and then fitting the parameters of the model using an estima-
tion technique such as Maximum Likelihood Estimation. This is done by passing the GP object to the £it_GP_MAP
function, which returns the same GP object but with the parameter values estimated.

gp = mogp_emulator.GaussianProcess (simulation_points, simulation_output, nugget="fit")
gp = mogp_emulator.fit_GP_MAP (gp, n_tries=1)

print ("Correlation lengths = ".format (gp.theta.corr))
print ("Sigma = ".format (np.sqrt (gp.theta.cov)))

While the function is called £it_GP_MAP (MAP means Maximum A Posteriori), in this case we have not provided
any prior information on the parameter values, so it results in MLE.

Following fitting, we print out some of the hyperparameters that are estimated. First, we print out the correlation
lengths estimated for each of the input parameters. These determine how far we have to move in that coordinate
direction to see a significant change in the output. If you run this example, if you get a decent fit you should see
correlation lengths of ~ 1.3 and ~ 500 (your values may differ a bit, but note that the fit is not highly sensitive to these
values). The overall variation in the function is captured by the variance scale o, which should be around ~ 20, 000
for this example.

If your values are very different from these, there is a good chance your fit is not very good (perhaps due to poor
sampling). If that is the case, you can run the script again until you get a reasonable fit.

3.2.3 Emulator Validation

To show that the emulator is doing a reasonable job, we now cross validate the emulator to compare its predictions
with the output from the simulator. This involves drawing additional samples and running the simulations as was done
above. However, we also need to predict what the GP thinks the function values are and the uncertainty. This is done
with the predict method of GaussianProcess:

n_valid = 10

validation_points = lhd.sample(n_valid)
validation_output = np.array([simulator(p) for p in validation_points])
predictions = gp.predict (validation_points)

print_results(validation_points, predictions.mean)

predictions is an object containing the mean and uncertainty (variance) of the predictions. A GP assumes that the
outputs follow a Normal Distribution, so we can perform validation by asking how many of our validation points mean
estimates are within 2 standard deviations of the true value. Usually for this example this is about 8/10, so not quite
as we would expect if it were perfectly recreating the function. However, we will see that this still is good enough in
most cases for the task at hand.

3.2. UQ Implementation 13

Multi-Output GP Emulator Documentation, Release 0.6.0

3.2.4 History Matching

The final step in the analysis is to perform calibration, where we draw a large number of samples from the model input
and compare the output of the surrogate model to the observations to determine what inputs are plausible given the
data. There are many ways to perform model calibration, but we think that History Matching is a robust technique
well-suited for most problems. It has the particular advantage in that even in the situation where the surrogate model
is not particularly accurate, the results from History Matching are still valid. This is in contrast to full Bayesian
Calibration, where the surrogate model must be accurate over the entire input space to obtain good results.

History matching involves computing an implausibility metric, which determines how likely a particular set of inputs
describes the given observations. There are many choices for how to compute this metric, but we default to the
simplest version where we compute the number of standard deviations between the surrogate model mean and the
observations. The variance is determined by summing the observation error, the surrogate model error, and a final
error known as model discrepancy. Model discrepancy is meant to account for the fact that our simulations do
not completely describe reality, and is an important consideration in studying most complex physical models. In this
example, however, we assume that our model is perfect and the model discrepancy is zero, though we will still consider
the other two sources of error.

To compute the implausibility metric, we need to draw a much larger number of samples from the experimental design
to ensure that we have good coverage of the input parameter space (it is not uncommon to make millions of predictions
when doing history matching in research problems). We draw from our Latin Hypercube Design again, though at this
sampling density there is probably not a significant difference between the Latin Hypercube and Monte Carlo sampling
(especially in only 2 dimensions). Then, we create a HistoryMatching object and compute which points are “Not Ruled
Out Yet” (NROY). This is done as follows:

prediction_points = lhd.sample (n_predict)
hm = mogp_emulator.HistoryMatching (gp=gp, coords=prediction_points, obs=[2000., 400.])
nroy_points = hm.get_NROY ()

print ("Ruled out of points".format (n_predict - len(nroy_points), n_predict))

First, we set a large number of samples and draw them from the experimental design object. Then, We construct the
HistoryMatching object by giving the fit GP surrogate model (the gp argument), the prediction points to consider
(the coords argument), and the observations (the obs argument) as an observed value with an uncertainty (as a
variance). The predict method of the GP object is used to make predictions inside the history matching class. With
the constructed HistoryMatching object, we can obtain the NROY points by calling the get_NROY method. This
returns a list of integer indices that can be used to index into the prediction_points array and learn about the
points that are not ruled out by our analysis. We finally print out the fraction of points that were ruled out. In most
cases, this should be a large fraction of the space, usually around 98% of the sampled points. Those that are not ruled
out are plausible inputs given the data.

We can visualize this quite easily due to the fact that our parameter space is only 2D by making a scatter plot of the
NROY points. We also include the sample points used to construct the surrogate model for reference. This plotting
command is only executed if matplot1ib is installed:

try:
import matplotlib.pyplot as plt
makeplots = True

except ImportError:
makeplots = False

plt.figure ()
plt.plot (prediction_points[nroy_points, 0], prediction_points|[nroy_points,1], "o",
—label="NROY points")

(continues on next page)

14 Chapter 3. Tutorial

Multi-Output GP Emulator Documentation, Release 0.6.0

(continued from previous page)

plt.plot (simulation_points[:,0], simulation_points[:,1],"o", label="Simulation_
—Points")

plt.xlabel ("log Drag Coefficient")

plt.ylabel ("Launch velocity (m/s)")

plt.legend()

plt.show()

which should make a plot that looks something like this:

1000 + ’

800 f
g |
£
-, 600 A '
= ® .
g ® NROY points
T>J Simulation Points
S 400
c
>
@
- ®
200 A

L S
o 0g®

ol 8§ pr S

-5 —4 -3 -2 -1 0 1
log Drag Coefficient

If the original emulator makes accurate predictions, you should get something that looks similar to the above plot. As
you can see, most of the space can be ruled out, and only a small fraction of the points remain as plausible options.
For launch velocities below around 200 m/s the projectile cannot reach the observed distance regardless of the drag
coefficient. Above this value, a narrow range of (C, vg) pairs are allowed (presumably a line plus some error due to the
observation error if our emulator could exactly reproduce the simulator solution). Above a drag coefficient of around
10~2 kg/m, none of the launch velocities that we sampled can produce the observations as the drag is presumably too
high for the projectile to travel that distance. There are some points at the edges of the simulation that we cannot rule
out, though the fact that they occur in gaps in the input simulation sampling suggests that they are likely due to errors
in our emulator in those regions.

3.3 More Details

This simple analysis illustrates the basic approach to running a model calibration example. In practice, this simulator is
not particularly expensive to run, and so we could imagine doing this analysis without the surrogate model. However,
if the simulation takes even 1 second, drawing the 10,000 samples needed to explore the parameter space would take
3 hours, and a million samples would take nearly 2 weeks. Thus, the surrogate becomes necessary very quickly if we

3.3. More Details 15

Multi-Output GP Emulator Documentation, Release 0.6.0

wish to exhaustively explore the input space to the point of being confident in our sampling.

More details about these steps can be found in the Uncertainty Quantification Methods section, or on the following
page that goes into more details on the options available in this software library. For more on the specific implemen-
tation detials, see the various implementation pages describing the software components.

16 Chapter 3. Tutorial

CHAPTER 4

Details on the Method

The UQ workflow described in the Overview section has three main components: Experimental Design, a Gaussian
Process Emulator, and History Matching, each of which we describe in more detail on this page. For more specifics
on the software implementation, see the linked pages to the individual classes provided with this library.

4.1 Experimental Design

To run the simulator, we must first select the inputs given some broad knowledge of the parameter space. This is
done using the various ExperimentalDesign classes, which require that the user specifies the distribution from which
parameter values are drawn. Depending on the particular design used, the design computes a desired number of points
to sample for the experimental design.

The simplest approach is to use a Monte Carlo Design, which simply randomly draws points from the underlying
distributions. However, in practice this does not usually give the best performance, as no attempt is made to draw
points from the full range of the distribution. To improve upon this, we can use a Latin Hypercube Design, which
guarantees that the every sample is drawn from a different quantile of the underlying distribution.

In practice, however, because the computation required to fit a surrogate model is usually small when compared to the
computational effort in running the simulator, a Sequential Design can provide improved performance. A sequential
design is more intelligent about the next point to sample by determining what new point from a set of options will
improve the surrogate model. This package provides an implementation of the Mutual Information for Computer
Experiments (MICE) sequential design algorithm, which has been shown to outperform Latin Hypercubes with only a
small additional computational overhead.

4.2 Gaussian Process Emulator

The central component of the UQ method is Gaussian Process regression, which serves as the surrogate model in the
UQ workflow adopted here. Given a set of input variables and target values, the Gaussian Process interpolates those
values using a multivariate Gaussian distribution using user-specified mean and covariance functions and priors on the
hyperparameter values (if desired). Fitting the Gaussian process requires inverting the covariance matrix computed
from the training data, which is done using Cholesky decomposition as the covariance matrix is symmetric and positive

17

Multi-Output GP Emulator Documentation, Release 0.6.0

definite (complexity is O(n?), where n is the number of training points). The squared exponential covariance function
contains several hyperparameters, which includes a length scale for each input variable and an overall variance. These
hyperparameters can be set manually, or chosen automatically by minimizing the negative logarithm of the posterior
marginalized over the data. Once the hyperparameters are fit, predictions can be made efficiently (complexity O(n)
for each prediction, where n is again the number of training points), and the variance computed (complexity O(n?)
for each prediction).

The code assumes that the simulations are exact and attempts to interpolate between them. However, in some cases, if
two training points are too close to one another the resulting covariance matrix is singular due to the co-linear points.
A “nugget” term (noise added to the diagonal of the covariance matrix) can be added to prevent a singular covariance
matrix. This nugget can be specified in advance (if the observations have a fixed uncertainty associated with them),
or can be estimated. Estimating the nugget can treat the nugget as a hyperparameter that can be optimised, or find the
nugget adaptively by attempting to make the nugget as small as necessary in order to invert the covariance matrix. In
practice, the adaptive nugget is the most robust, but requires additional computational effort as the matrix is factored
multiple times during each optimisation step.

4.2.1 Covariance Functions

The library implements two stationary covariance functions: Squared Exponential and Matern 5/2. These can be
specified when creating a new emulator.

4.2.2 Mean Functions

A Mean Function can be specified using R-style formulas. By default, these are parsed with the pat sy library (if it is
installed), so R users are encouraged to install this pacakge. However, mogp_emulator has its own built-in parser
to construct mean functions from a string. Mean functions can also be constructed directly from a rich language mean
function classes.

4.2.3 Hyperparameters

There are two types of hyperparameters for a GP emulator, those associated with mean functions, and those associ-
ated with the covariance kernel. All mean function hyperparameters are treated on a linear scale, while the kernel
hyperparameters are on a logarithmic scale as all kernel parameters are constrained to be positive. The first part of
the hyperparameter array contains the n,,.q, mean function parameters (i.e. if the mean function has 4 parameters,
then the first 4 entries in the hyperparameter array belong to the mean function), then come the D correlation length
hyperparameters (the same as the number of inputs), followed by the covariance and nugget hyperparameters. This
means that the total number of hyperparameters depends on the mean function specification and is 7yeqn + D + 2.

To interpret the correlation length hyperparameters, the relationship between the reported hyperparameter 6 and the
correlation length d is exp(—6) = d?. Thus, a large positive value of § indicates a small correlation length, and a large
negative value of 6 indicates a large correlation length.

The covariance scale o2 can be interpreted as exp(f) = 2. Thus, in this case a large positive value of ¢ indicates a
large overall variance scale and a large negative value of 6 indicates a small variance scale.

If the nugget is estimated via hyperparmeter optimisation, the nugget is determined by exp(#) = J, where ¢ is added
to the diagonal of the covariance matrix. Large positive values of § indicates a large nugget and a large negative value
of # indicates a small nugget. The nugget value can always be extracted on a linear scale via the nugget attribute of
a GP regardless of how it was fit, so this is the most reliable way to determine the nugget.

18 Chapter 4. Details on the Method

Multi-Output GP Emulator Documentation, Release 0.6.0

4.2.4 Hyperparameter Priors

Prior beliefs can be specified on hyperparameter values. Exactly how these are interpreted depends on the type of
hyperparameter and the type of prior distribution. For normal prior distributions, these are applied directly to the
hyperparameter values with no transformation. Thus, for mean function hyperparameters, a normal distribution is
assumed for a normal prior, while for kernel parameters a lognormal distribution is assumed.

For the Gamma and Inverse Gamma priors, the distribution is only defined over positive hyperparameter values, so all
parameters are exponentiated and then the exponentiated value is used when computing the log PDF.

4.3 Multi-Output GP

Simulations with multiple outputs can be fit by assuming that each output is fit by an independent emulator. The code
allows this to be done in parallel using the Python multiprocessing library. This is implemented in the MultiOutputGP
class, which exhibits an interface that is nearly identical to that of the main GaussianProcess class.

4.4 Estimating Hyperparameters

For regular and Multi-Output GPs, hyperparameters are fit using the £it_GP_MAP function in the fitting module,
using L-BFGS optimisation on the negative log posterior. This modifies the hyperparameter values of the GP or
MOGTP object, returning a fit object that can be used for prediction.

4.5 History Matching

The final component of the UQ workflow is the calibration method. This library implements History Matching to
perform model calibration to determine which points in the input space are plausible given a set of observations.
Performing History Matching requires a fit GP emulator to a set of simulator runs and an observation associated
with the simulator output. The emulator is then used to efficiently estimate the simulator output, accounting for all
uncertainties, to compare with observations and points that are unlikely to produce the observation can then be “ruled
out” and deemed implausible, reducing the input space to better understand the system under question.

At the moment, History Matching is only implemented for a single output and a single set of simulation runs. Future
work will extend this to multiple outputs and multiple waves of simulations.

4.3. Multi-Output GP 19

Multi-Output GP Emulator Documentation, Release 0.6.0

20

Chapter 4. Details on the Method

CHAPTER B

Gaussian Process Demo (Python)

This demo illustrates some various examples of fitting a GP emulator to results of the projectile problem discussed in
the Tutorial. It shows a few different ways of estimating the hyperparameters. The first two use Maximum Likelihood
Estimation with two different kernels (leading to similar performance), while the third uses a linear mean function and
places prior distributions on the hyperparameter values. The MAP estimation technique generally leads to significantly
better performance for this problem, illustrating the benefit of setting priors.

import numpy as np
import mogp_emulator
from projectile import simulator, print_results

additional GP examples using the projectile demo
define some common variables

n_samples = 20
n_preds 10

Experimental design —— requires a list of parameter bounds if you would like to use
uniform distributions. If you want to use different distributions, you

can use any of the standard distributions available in scipy to create

the appropriate ppf function (the inverse of the cumulative distribution).
Internally, the code creates the design on the unit hypercube and then uses

the distribution to map from [0,1] to the real parameter space.

HH FH W W H H

ed = mogp_emulator.LatinHypercubeDesign([(-5., 1.), (0., 1000.)1)
sample space

inputs = ed.sample (n_samples)

run simulation

targets = np.array([simulator(p) for p in inputs])

(continues on next page)

21

Multi-Output GP Emulator Documentation, Release 0.6.0

(continued from previous page)

HEFFHRAAAAAFFFRAARAAFFFRRAAAFFFRRAAAAFFFRRAAAAFFFRRAAAAFFFREAAAAFFFRRAAAAFFFRRAAAAS
First example —-— fit GP using MLE and Squared Exponential Kernel and predict
print ("Example 1: Basic GP")

create GP and then fit using MLE

gp = mogp_emulator.GaussianProcess (inputs, targets)

gp = mogp_emulator.fit_GP_MAP (gp)

create 20 target points to predict

predict_points = ed.sample (n_preds)

means, variances, derivs = gp.predict (predict_points)

print_results (predict_points, means)
AAFHAFFHARFHAFFRAFFHAFFHAFHAAFHAAFRAAFRAAFHAFFRAFFHAFFRAFFRAFFAAAFAAFHAAFEAAFRAA A

Second Example: How to change the kernel, use a fixed nugget, and create directly,,
—using fitting function

print ("Example 2: Matern Kernel")
you can simply pass the args to GP to the fitting function
gp_matern = mogp_emulator.fit_GP_MAP (inputs, targets, kernel='Matern52', nugget=1.e-8)

return type from predict method is an object with mean, unc, etc defined as_
—attributes

pred_res = gp_matern.predict (predict_points)

print_results (predict_points, pred_res.mean)
FAFRFAAAAFAFARAAAAAAFAAAAAAFAAARARFAAAHARAAFAEA A A RFA R A AFA R R RA AR R A AF AR
Third Example: Specify a mean function and set priors to Fit Hyperparameters via MAP
print ("Example 3: Mean Function and MAP fitting")

This example uses a linear mean function and sets priors on the hyperparameters

Linear mean has 3 hyperparameters (intercept and 2 slopes, one for each input)

Kernel has 3 hyperparameters (2 correlation lengths, 1 covariance scale)

Nugget is the final hyperparameter (7 in total)

Use a normal prior on all mean function values (requires mean, std)

Use a normal prior on correlation lengths (which are on a log scale, so becomes a,
—~lognormal

distribution once raw values on log scale are converted to linear scale)

Inverse Gamma distribution on covariance (favors large values)
Gamma distribution on nugget (favors negative values)

(continues on next page)

22 Chapter 5. Gaussian Process Demo (Python)

Multi-Output GP Emulator Documentation, Release 0.6.0

(continued from previous page)

priors = [mogp_emulator.Priors.NormalPrior (0., 10),
mogp_emulator.Priors.NormalPrior (0., 10.),
mogp_emulator.Priors.NormalPrior (0., 10.)
mogp_emulator.Priors.NormalPrior (0., 1.)
mogp_emulator.Priors.NormalPrior (-10., 1
mogp_emulator.Priors.InvGammaPrior (1., 1.),
mogp_emulator.Priors.GammaPrior (1., 1.)]

create GP, passing list of priors and a string representing the mean function
tell it to estimate the nugget as well

gp_map = mogp_emulator.GaussianProcess (inputs, targets, mean="x[0]+x[1]",
—priors=priors, nugget="fit")

[

fit hyperparameters

gp_map = mogp_emulator.fit_GP_MAP (gp_map)

gp can be called directly if only the means are desired
pred_means = gp_map (predict_points)

print_results (predict_points, pred_means)

23

Multi-Output GP Emulator Documentation, Release 0.6.0

24 Chapter 5. Gaussian Process Demo (Python)

CHAPTER O

Gaussian Process Kernel Demos (Python)

This demo illustrates use of some of the different kernels available in the package and how they can be set. In
particular, it shows use of the ProductMat 52 kernel and the UniformSgExp kernel and how these kernels give
slightly different optimal hyperparameters on the same input data.

import numpy as np

import mogp_emulator

from mogp_emulator.Kernel import UniformSgExp
from projectile import print_results

additional GP examples using different Kernels
define some common variables

n_samples = 20
n_preds = 10

define target function

def f(x):
return 4.+np.exp (-0.5% ((x[0] — 2.)*%x2/2. + (x[1]

4.)%%x2/0.25))

Experimental design —-- requires a list of parameter bounds 1f you would like to use
uniform distributions. If you want to use different distributions, you

can use any of the standard distributions available in scipy to create

the appropriate ppf function (the inverse of the cumulative distribution).
Internally, the code creates the design on the unit hypercube and then uses

the distribution to map from [0,1] to the real parameter space.

S R R R W W

ed = mogp_emulator.LatinHypercubeDesign ([(0., 5.), (0., 5.)1)
sample space

inputs = ed.sample (n_samples)

(continues on next page)

25

Multi-Output GP Emulator Documentation, Release 0.6.0

(continued from previous page)

run simulation

targets = np.array([f(p) for p in inputs])
FHEARFRAFFRAFFAAFFAAFHAAFHAAFRAFFEAAFRAAF AR FHAAF AR HAAH A AR F AR F AR SRS
First example ——- standard Squared Exponential Kernel

print ("Example 1: Squared Exponential")

create GP and then fit using MLE

gp = mogp_emulator.GaussianProcess (inputs, targets)

gp = mogp_emulator.fit_GP_MAP (gp)

look at hyperparameters (correlation lengths, covariance, and nugget)

print ("Correlation lengths: {}".format (gp.theta.corr))
print ("Covariance: {)".format (gp.theta.cov))
print ("Nugget: {/}".format (gp.theta.nugget))

create 20 target points to predict

predict_points = ed.sample (n_preds)

means, variances, derivs = gp.predict (predict_points)

print_results (predict_points, means)
ldidaddddaddddadaidddaddadaddddaddidadidiadiddaddddadadidadaddddaddddaddidad AR AR A
Second Example: Specify Kernel using a string

print ("Example 2: Product Matern Kernel")

You may use a string matching the name of the Kernel type you wish to use

gp_matern = mogp_emulator.fit_GP_MAP (inputs, targets, kernel='ProductMatb52', nugget=1.
<—>e_8)

look at hyperparameters (correlation lengths, covariance, and nugget)

print ("Correlation lengths: {/}".format (gp_matern.theta.corr))
print ("Covariance: {}".format (gp_matern.theta.cov))
print ("Nugget: {/}".format (gp_matern.theta.nugget))

return type from predict method is an object with mean, unc, etc defined as_
—attributes

means, variances, derivs = gp_matern.predict (predict_points)
print_results (predict_points, means)
#tHE#AF A HAF A FAF A RAF AR AR AR AR AR AR F AR A AR F AR AR AR A AR A AR H AR

Third Example: Use a Kernel object

(continues on next page)

26 Chapter 6. Gaussian Process Kernel Demos (Python)

Multi-Output GP Emulator Documentation, Release 0.6.0

(continued from previous page)

print ("Example 3: Use a Kernel Object")

The UniformSgExp object only has a single correlation length for all inputs
kern = UniformSgExp ()

gp_uniform = mogp_emulator.GaussianProcess (inputs, targets, kernel=kern)

fit hyperparameters

gp_uniform = mogp_emulator.fit_GP_MAP (gp_uniform)

Note that only a single correlation length

print ("Correlation length: {/}".format (gp_uniform.theta.corr))
print ("Covariance: {}".format (gp_uniform.theta.cov))
print ("Nugget: {/}".format (gp_uniform.theta.nugget))

gp can be called directly if only the means are desired
means, variances, derivs = gp_uniform.predict (predict_points)

print_results (predict_points, means)

27

Multi-Output GP Emulator Documentation, Release 0.6.0

28 Chapter 6. Gaussian Process Kernel Demos (Python)

CHAPTER /

Mutual Information for Computer Experiments (MICE) Demos

This demo shows how to use the MICEDesign class to run a sequential experimental design. The predictions of a GP
on some test points is compared between an LHD and the MICE design, showing that the performance of the MICE
design is a significant improvement.

import mogp_emulator
import numpy as np
from projectile import simulator, print_results

simple MICE examples using the projectile demo

Base design —-—- requires a list of parameter bounds if you would like to use
uniform distributions. If you want to use different distributions, you

can use any of the standard distributions available in scipy to create

the appropriate ppf function (the inverse of the cumulative distribution).
Internally, the code creates the design on the unit hypercube and then uses
the distribution to map from [0,1] to the real parameter space.

S HH R W H

lhd = mogp_emulator.LatinHypercubeDesign([(-5., 1.), (0., 1000.)1)
FHAFAFHAHAFHAHAFEAHAF A EAF AR F A EA AR AR FAF AR A A FAF A F AR F AR AR A AR
first example —-— run entire design internally within the MICE class.

first argument is base design (required), second is simulator function (optional,
but required if you want the code to run the simualtions internally)

He

Other optional arguments include:

n_samples (number of sequential design steps, optional, default is not specified
meaning that you will specify when running the sequential design)

n_init (size of initial design, default 10)

n_cand (number of candidate points, default is 50)

nugget (nugget parameter for design GP, default is to set adaptively)

nugget_s (nugget parameter for candidate GP, default is 1.)

S H W HH R R R

(continues on next page)

29

Multi-Output GP Emulator Documentation, Release 0.6.0

(continued from previous page)

n_init = 5
n_samples = 20
n_cand = 100

md = mogp_emulator.MICEDesign(lhd, simulator, n_samples=n_samples, n_init=n_init, n_
—cand=n_cand)

md.run_sequential_design ()
get design and outputs

inputs = md.get_inputs ()
targets = md.get_targets()

print ("Example 1:")

print ("Design inputs:\n", inputs)
print ("Design targets:\n", targets)
print ()

FHEAFFRAFFRAFFRAFFRAFHAAFHAAFRAAFEAAFEAFFRAFFHAFFRAFFRAFFAAFF A AR AR AR HAS
second example: run design manually

md2 = mogp_emulator.MICEDesign (lhd, n_init=n_init, n_cand=n_cand)

init_design = md2.generate_initial_design{()

print ("Example 2:")
print ("Initial design:\n", init_design)

run initial points manually
init_targets = np.array([simulator(s) for s in init_design])
set initial targets
md2.set_initial_targets (init_targets)
run 20 sequential design steps
for d in range(n_samples) :
next_point = md2.get_next_point ()
next_target = simulator (next_point)
md2.set_next_target (next_target)

look at design and outputs

inputs = md2.get_inputs()
targets = md2.get_targets()

print ("Final inputs:\n", inputs)
print ("Final targets:\n", targets)

look at final GP emulator and make some predictions to compare with 1lhd

lhd_design = lhd.sample(n_init + n_samples)

(continues on next page)

30 Chapter 7. Mutual Information for Computer Experiments (MICE) Demos

Multi-Output GP Emulator Documentation, Release 0.6.0

(continued from previous page)

gp_lhd = mogp_emulator.fit_GP_MAP (lhd_design, np.array([simulator(p) for p in lhd_
—design]))

gp_mice = mogp_emulator.GaussianProcess (inputs, targets)
gp_mice = mogp_emulator.fit_GP_MAP (inputs, targets)
test_points = lhd.sample (10)

print ("LHD:")

print_results (test_points, gp_lhd(test_points))

print ()

print ("MICE:")
print_results (test_points, gp_mice(test_points))

31

Multi-Output GP Emulator Documentation, Release 0.6.0

32

Chapter 7. Mutual Information for Computer Experiments (MICE) Demos

CHAPTER 8

History Matching Demos

This demo shows how to carry out History Matching using a GP emulator. The two examples show how a fit GP can
be passed directly to the HistoryMatching class, or how the predictions object can be passed instead. The demo also
shows how other options can be set.

import mogp_emulator
import numpy as np

simple History Matching example
simulator function —- needs to take a single input and output a single number

def f(x):
return np.exp (-np.sum((x-2.)**2, axis = -1)/2.)

Experimental design —-- requires a list of parameter bounds if you would like to use
uniform distributions. If you want to use different distributions, you

can use any of the standard distributions available in scipy to create

the appropriate ppf function (the inverse of the cumulative distribution).
Internally, the code creates the design on the unit hypercube and then uses

the distribution to map from [0,1] to the real parameter space.

S o HH KR R R

ed = mogp_emulator.LatinHypercubeDesign ([(0., 5.), (0., 5.)1])

sample space, use many samples to ensure we get a good emulator
inputs = ed.sample (50)

run simulation

targets = np.array([f(p) for p in inputs])

Example observational data is a single number plus an uncertainty.

In this case we use a number close to 1, which should have a corresponding
input close to (2,2) after performing history matching

(continues on next page)

33

Multi-Output GP Emulator Documentation, Release 0.6.0

(continued from previous page)

FHHARFRAFFRAFFAAFFAAFRAAFEAAFRAFFEAAFEAAF AR FHAAF AR HAAF R AR F AR FEAAF AR A SRS
First step -- fit GP using MLE and Squared Exponential Kernel

gp = mogp_emulator.GaussianProcess (inputs, targets)

gp = mogp_emulator.fit_GP_MAP (gp)
HHFFHRRAAAAFFFRAARAAFFFRRAAAAFFRRAAAAFFFRRAARAFFFRRAAAAFFFREAAAAFFFREAAAAFFFARAAAA
First Example: Use HistoryMatching class to make the predictions

print ("Example 1: Make predictions with HistoryMatching object")

create HistoryMatching object, set threshold to be low to make printed output
easier to read

threshold = 0.01
hm = mogp_emulator.HistoryMatching (threshold=threshold)

For this example, we set the observations, GP, and the coordinates

observations 1is either a single float (the value) or two floats (value and
uncertainty as a variance)

obs = [1., 0.08]

hm.set_obs (obs)

hm.set_gp (gp)

set coordinates of GP object where we will test if the points can plausbily
explain the data here we use our existing experimental design, but sample

10000 points

coords = ed.sample (10000)
hm.set_coords (coords)

calculate implausibility metric
implaus = hm.get_implausibility ()
print points that we have not ruled out yet:

for p, im in zip(coords[hm.get_NROY ()], implaus[hm.get_NROY()]):
print ("Sample point: {} Implausibility: {/}".format (p, im))

iddzadsdadasadasdsasdsasdsasdsatisasdadddaaddssddadadatdsatdsaddsasisasdaaddsaddsidiad
Second Example: Pass external GP predictions and add model discrepancy

print ("Example 2: External Predictions and Model Discrepancy")

use gp to make predictions on 10000 new points externally

coords = ed.sample (10000)

expectations = gp.predict (coords)

(continues on next page)

34 Chapter 8. History Matching Demos

Multi-Output GP Emulator Documentation, Release 0.6.0

(continued from previous page)

now create HistoryMatching object with these new parameters

hm_extern = mogp_emulator.HistoryMatching (obs=obs, expectations=expectations,
threshold=threshold)

calculate implausibility, adding a model discrepancy (as a variance)
implaus_extern = hm_extern.get_implausibility (0.1)
print points that we have not ruled out yet:

for p, im in zip(coords[hm_extern.get_NROY ()], implaus_extern[hm extern.get_NROY()]) :
print ("Sample point: Implausibility: ".format (p, im))

35

Multi-Output GP Emulator Documentation, Release 0.6.0

36

Chapter 8. History Matching Demos

CHAPTER 9

Kernel Dimension Reduction (KDR) Demos

This demo shows how to use the gKDR class to perform dimension reduction on the inputs to an emulator. The
examples show how dimension reduction with a known number of dimensions can be fit, as well as how the class can
use cross validation to infer a best number of dimensions from the data itself.

import mogp_emulator
import numpy as np

simple Dimension Reduction examples

simulator function —- returns a single "important" dimension from
at least 4 inputs

def f(x):
return (x[0]-x[1]+2.xx[3])/3.

Experimental design —-- create a design with 5 input parameters
all uniformly distributed over [0,1].

ed = mogp_emulator.LatinHypercubeDesign (5)
sample space

inputs = ed.sample (100)

run simulation

targets = np.array([f(p) for p in inputs])
AAFHAFHHARFHAFFRAFFHAFFAAFHAAFHAAFHAAFRAFFEAFFRAFFHAFFRAFFRAFFHAFFAAFHAAFRAAFRAA A
First example —- dimension reduction given a specified number of dimensions

(note that in real life, we do not know that the underlying simulation only
has a single dimension)

(continues on next page)

37

Multi-Output GP Emulator Documentation, Release 0.6.0

(continued from previous page)

print ("Example 1: Basic Dimension Reduction")

create DR object with a single reduced dimension (K = 1)
dr = mogp_emulator.gKDR (inputs, targets, K=1)

use it to create GP

gp = mogp_emulator.fit_GP_MAP (dr (inputs), targets)

create 5 target points to predict

predict_points = ed.sample (5)
predict_actual = np.array([f(p) for p in predict_points])

means = gp (dr (predict_points))

for pp, m, a in zip(predict_points, means, predict_actual):

1

print ("Target point: {} Predicted mean: {} Actual mean: {}".format (pp, m, a))
HAARFAAAHARARARFAAAAARFAFAFARAAFAFARARA AR A AA AR R A AFA AR RA AR R A AF AR
Second Example: Estimate dimensions from data
print ("Example 2: Estimate the number of dimensions from the data")

Use the tune_parameters method to use cross validation to create DR object

Note this is more realistic than the above as it does not know the

number of dimensions in advance

dr_tuned, loss = mogp_emulator.gKDR.tune_parameters (inputs, targets,
mogp_emulator.fit_GP_MAP,
cXs=[3.], cY¥Ys=[3.])

Get number of inferred dimensions (usually gives 2)

print ("Number of inferred dimensions is {}".format (dr_tuned.K))

use object to create GP

gp_tuned = mogp_emulator.fit_GP_MAP (dr_tuned(inputs), targets)

create 10 target points to predict

predict_points = ed.sample (5)
predict_actual = np.array([f(p) for p in predict_points])

means = gp_tuned (dr_tuned (predict_points))

for pp, m, a in zip(predict_points, means, predict_actual):
print ("Target point: {} Predicted mean: {} Actual mean: {}".format (pp, m, a))

38 Chapter 9. Kernel Dimension Reduction (KDR) Demos

cHAaPTER 10

Gaussian Process Demo (GPU)

This demo illustrates a simple example of fitting a GP emulator to results of the projectile problem discussed in the
Tutorial, using the GPU implementation of the emulator.

Note that in order for this to work, it must be run on a machine with an Nvidia GPU, and with CUDA libraries
available. It also depends on Eigen and pybind.

The example uses Maximum Likelihood Estimation with a Squared Exponential kernel, which is currently the only
kernel supported by the GPU implementation.

import numpy as np
import mogp_emulator
from projectile import simulator, print_results

GP example using the projectile demo on a GPU

To run this demo you must be on a machine with an Nvidia GPU, and with
CUDA libraries available. There are also dependencies on eigen and pybindll
If you are working on a managed cluster, these may be available via commands

module load cuda/11.2

module load py-pybindll-2.2.4-gcc-5.4.0-tdtz6iqg
module load gcc/7

module load eigen

S o O R R W R R R R

You should then be able to compile the cuda code at the same time as installing the_
—mogp_emulator package, by doing (from the main mogp_emulator/ directory:

pip install

(note that if you don't have write access to the global directory

(e.g. if you are on a cluster such as CSD3), you should add the

'——-user' flag to this command)

define some common variables

n_samples = 20

(continues on next page)

39

Multi-Output GP Emulator Documentation, Release 0.6.0

(continued from previous page)

n_preds = 10

Experimental design —— requires a list of parameter bounds if you would like to use
uniform distributions. If you want to use different distributions, you

can use any of the standard distributions available in scipy to create

the appropriate ppf function (the inverse of the cumulative distribution).
Internally, the code creates the design on the unit hypercube and then uses

the distribution to map from [0,1] to the real parameter space.

S o HH R W H

ed = mogp_emulator.LatinHypercubeDesign([(-5., 1.), (0., 1000.)1)

sample space

inputs = ed.sample (n_samples)

run simulation

targets = np.array([simulator(p) for p in inputs])
ldddaddsdaddsdasatdadasdadatdadatdadatsadatssdadasdadatdadaddadaddidaddidadsiddsssidi
Basic example —— fit GP using MLE and Squared Exponential Kernel and predict
print ("Example: Basic GP")

create GP and then fit using MLE

the only difference between this and the standard CPU implementation

is to use the GaussianProcessGPU class rather than GaussianProcess.

gp = mogp_emulator.GaussianProcessGPU (inputs, targets)

gp = mogp_emulator.fit_GP_MAP (gp)

create 20 target points to predict

predict_points = ed.sample (n_preds)

means, variances, derivs = gp.predict (predict_points)

print_results (predict_points, means)

40 Chapter 10. Gaussian Process Demo (GPU)

cHAPTER 11

Gaussian Process Demo (R)

=

Short demo of how to fit and use the GP class to predict unseen values based on a
mean function and prior distributions.

B

Before loading reticulate, you will need to configure your Python Path to
use the correct Python version where mogp_emulator is installed.
mogp_emulator requires Python 3, but some OSs still have Python 2 as the
default, so you may not get the right one unless you explicitly configure
it in reticulate. I use the Python that I installed on my Mac with homebrew,
though on Linux the Python installed via a package manager may have a
different path.

H o S o W HE e

The environment variable is RETICULATE_PYTHON, and I set it to
"/usr/local/bin/python" as this is the Python where mogp_emulator is installed.
This is set automatically in my .Renviron startup file in my home directory,
but you may want to configure it some other way. No matter how you decide

to configure it, you have to set it prior to loading the reticulate library.

H oW o #

library(reticulate)

mogp_emulator <- import ("mogp_emulator")
mogp_priors <- import ("mogp_emulator.Priors")

create some data

n_train <- 10

X_scale <- 2.

x1l <- runif(n_train)*x_scale
x2 <— runif(n_train)*x_scale
y <— exp(—x1xx2 — xX2%x%x2)

x <- data.frame(x1l, x2, V)

GaussianProcess requires data as a matrix, but often you may want to do some
regression using a data frame in R. To do this, we can split this data frame
into inputs, targets, and a dictionary mapping column names to integer indices

=

(continues on next page)

41

Multi-Output GP Emulator Documentation, Release 0.6.0

(continued from previous page)

using the function below

extract_targets <- function(df, target_cols = list("y")) {
"separate a data frame into inputs, targets, and inputdict for use with GP class"

for (t in target_cols) {
stopifnot (t %$in% names (x))

n_targets <- length(target_cols)

inputs <- matrix (NA, ncol=ncol (x) - n_targets, nrow=nrow(x))
targets <- matrix (NA, ncol=n_targets, nrow=nrow (x))
inputdict <- dict ()

input_count <- 1
target_count <- 1

for (n in names (x)) {
if (n %in% target_cols) {
targets|[,target_count] <- as.matrix(x[n])

} else {
inputs [, input_count] <- as.matrix(x[n])
inputdict [n] <- as.integer (input_count - 1)

input_count <- input_count + 1

if (n_targets == 1) {
targets <- c(targets)

return (list (inputs, targets, inputdict))

target_list <- extract_targets (x)
inputs <- target_list[[1]]
targets <- target_list[[2]]

inputdict <- target_list[[3]]

Create the mean function formula as a string (or you could extract from the
formula found via regression). If you want correct expansion of your formula
in the Python code, you will need to install the patsy package (it is pip
installable) as it is used internally in mogp_emulator to parse formulas.

H o W H

S

Additionally, you will need to convert the column names from the data frame
to integer indices in the inputs matrix. This is done with a dict object as
illustrated below.

ETS

mean_func <= "y ~ x1 + x2 + I (x1xx2)"

Priors are specified by giving a list of prior objects (or NULL if you

wish to use weak prior information). Each distribution has some parameters
to set -- NormalPrior is (mean, std), Gamma is (shape, scale), and
InvGammaPrior is (shape, scale). See the documentation or code for the exact
functional format of the PDF.

e

(continues on next page)

42 Chapter 11. Gaussian Process Demo (R)

Multi-Output GP Emulator Documentation, Release 0.6.0

(continued from previous page)

If you don't know how many parameters you need to specify, it depends on
the mean function and the number of input dimensions. Mean functions

have a fixed number of parameters (though in some cases this can depend

on the dimension of the inputs as well), and then covariance functions have
one correlation length per input dimension plus a covariance scale and

a nugget parameter.

S o S o 3

4=

If in doubt, you can create the GP instance with no priors, use gp$n_params
to get the number, and then set the priors manually using gp$priors <- priors

TS

In this case, we have 4 mean function parameters (normal distribution on a
linear scale), 2 correlations lengths (normal distribution on a log scale,
so lognormal), a sigma”2 covariance parameter (inverse gamma) and a nugget
#

(Gamma) . If you choose an adaptive or fixed nugget, the nugget prior is ignored.
priors <- list (mogp_priors$NormalPrior (0., 1.),
mogp_priors$NormalPrior (0., 1.),
mogp_priors$NormalPrior (0., 1.),
mogp_priors$NormalPrior (0., 1.),
mogp_priors$NormalPrior (0., 1.),
mogp_priors$NormalPrior (0., 1.),
mogp_priors$InvGammaPrior (2., 1.),
)

mogp_priors$GammaPrior (1., 0.2

Finally, create the GP instance. If we had multiple outputs, we would
create a MultiOutputGP class in a similar way, but would have the option
of giving a single mean and list of priors (assumes it is the same for
each emulator), or a list of mean functions and a list of lists of

prior distributions. nugget can also be set with a single value or a list.

s

gp <- mogp_emulator$GaussianProcess (inputs, targets,
mean=mean_func,
priors=priors,
nugget="fit",
inputdict=inputdict)

gp is fit using the fit_GP_MAP function. It accepts a GaussianProcess or
MultiOutputGP object and returns the same type of object with the
hyperparameters fit via MAP estimation, with some options for how to perform
the minimization routine. You can also pass the arguments to create a GP/MOGP
to this function and it will return the object with estimated hyperparameters

S o W o

gp <- mogp_emulator$fit_GP_MAP (gp)

print (gp$current_logpost)
print (gpStheta)

now create some test data to make predictions and compare with known values
n_test <-— 10000

x1l_test <- runif(n_test)*x_scale
x2_test <- runif(n_test)*x_scale

x_test <- cbind(xl_test, x2_test)
y_actual <- exp(-xl_testxx2 - x2_testxx2)

(continues on next page)

43

Multi-Output GP Emulator Documentation, Release 0.6.0

(continued from previous page)

y_predict <- gp$predict (x_test)

y_predict is an object holding the mean, variance and derivatives (if computed)

access the values via y_predict$mean,

y_predictS$unc, and y_predict$deriv

print (sum((y_actual - y_predict$mean) *x2)/n_test)

44

Chapter 11. Gaussian Process Demo (R)

cHAPTER 12

Gaussian Process Demo with Small Sample Size

This demo includes an example shown at the EXCALIBUR workshop held online on 24-25 September, 2020. The
example shows the challenges of fitting a GP emulator to data that is poorly sampled, and how a mean function and
hyperparameter priors can help constrain the model in a situation where a zero mean and Maximum Likelikhood
Estimation perform poorly.

The specific example uses the projectile problem discussed in the Tutorial. It draws 6 samples, which might be a
typical sampling density for a high dimensional simulator that is expensive to run, where you might be able to draw
a few samples per input parameter. It shows the true function, and then the emulator means predicted at the same
points using Maximum Likelihood Estimation and a linear mean function combined with Maximum A Posteriori
Estimation. The MLE emulator is completely useless, while the MAP estimation technique leads to significantly
better performance and an emulator that is useful despite only drawing a small number of samples.

import numpy as np
from projectile import simulator
import mogp_emulator

try:
import matplotlib.pyplot as plt
makeplots = True

except ImportError:
makeplots = False

define a helper function for making plots

def plot_solution(field, title, filename, simulation_points, validation_points, tri):
plt.figure (figsize=(4,3))
plt.tripcolor(validation_points[:,0], wvalidation_points[:,1], tri.triangles,
field, vmin=0, vmax=5000.)
cb = plt.colorbar()
plt.scatter (simulation_points[:,0], simulation_points[:,1])
plt.xlabel ("log drag coefficient")
plt.ylabel ("Launch velocity (m/s)")
cb.set_label ("Projectile distance (m)")
plt.title(title)

(continues on next page)

45

Multi-Output GP Emulator Documentation, Release 0.6.0

(continued from previous page)

plt.tight_layout ()
plt.savefig(filename, dpi=200)

A tutorial illustrating effectiveness of mean functions and priors for GP emulation

Most often, we are not able to sample very densely from a simulation, so we
have relatively few samples per input parameter. This can lead to some problems
when constructing a robust emulator. This tutorial illustrates how we can build
better emulators using the tools in mogp_emulator.

HH W H

He

We need to draw some samples from the space to run some simulations and build our
emulators. We use a LHD design with only 6 sample points.

1lhd = mogp_emulator.LatinHypercubeDesign([(-4., 0.), (0., 1000.)])

n_simulations = 6
simulation_points = lhd.sample(n_simulations)
simulation_output = np.array([simulator(p) for p in simulation_points])

Next, fit the surrogate GP model using MLE, zero mean, and no priors.
Print out hyperparameter values as correlation lengths, sigma, and nugget

gp = mogp_emulator.GaussianProcess (simulation_points, simulation_output)
gp = mogp_emulator.fit_GP_MAP (gp)

print ("Zero mean and no priors:")

print ("Correlation lengths = {}".format (np.sqrt (np.exp(-gp.thetal:2]))))
print ("Sigma = {/}".format (np.sqgrt (np.exp(gp.thetal2]))))

print ("Nugget = {}".format (gp.nugget))

print ()

We can look at how the emulator performs by comparing the emulator output to
a large number of validation points. Since this simulation is cheap, we can
actually compute this for a large number of points.

n_valid = 1000
validation_points = lhd.sample(n_valid)
validation_output = np.array([simulator(p) for p in wvalidation_points])

if makeplots:
import matplotlib.tri
tri = matplotlib.tri.Triangulation((validation_points([:,0]+4.)/4.,
(validation_points([:,1]1/1000.))

plot_solution(validation_output, "True simulator", "simulator_ output.png",
simulation_points, validation_points, tri)

Now predict values with the emulator and plot output and error
predictions = gp.predict (validation_points)
if makeplots:
plot_solution (predictions.mean, "MLE emulator", "emulator_output_MLE.png",

simulation_points, validation_points, tri)

This is not very good! The simulation points are too sparsely sampled to give the
emulator any idea what to do about the function shape. We just know the value at a_

—few (continues on next page)

46 Chapter 12. Gaussian Process Demo with Small Sample Size

Multi-Output GP Emulator Documentation, Release 0.6.0

(continued from previous page)

points, and it throws up its hands and predicts zero everywhere else.

To improve this, we will specify a mean function and some priors to ensure that if_,
—we are

far away from an evaluation point we will still get some information from the_,
—emulator.

We specify the mean function using a string, which follows a similar approach to R-
—style

formulas. There is an implicit constant term, and we use x[index] to specify how we
want the formula to depend on the inputs. We choose a simple linear form here,
—which has

three fitting parameters in addition to the correlations lengths, sigma, and nugget
parameters above.

meanfunc = "x[0]+x[1]"

We now set priors for all of the hyperparameters to better constrain the estimation,
—procedure.

We assume normal priors for the mean function parameters with a large variance (to,,
—not constrain

our choice too much). Note that the mean function parameters are on a linear scale,
—while the

correlation lengths, sigma, and nugget are on a logarithmic scale. Thus, 1f we_
—choose normal

priors on the correlation lengths, these will actually be lognormal distributions.

Finally, we choose inverse gamma and gamma distributions for the priors on sigma,,
—and the nugget

as those are typical conjugate priors for variances/precisions. We pick them to be_,
—where they are as

we expect sigma to be large (as the function is very sensitive to inputs) while we_
—want the

nugget to be small.

priors = [mogp_emulator.Priors.NormalPrior (0., 10.),
mogp_emulator.Priors.NormalPrior (0., 10.),
mogp_emulator.Priors.NormalPrior (0., 10.),
mogp_emulator.Priors.NormalPrior (0., 1.),

)
mogp_emulator.Priors.NormalPrior (-10., 1.),
mogp_emulator.Priors.InvGammaPrior (1., 1.),
mogp_emulator.Priors.GammaPrior (1., 1.)]

Now, construct another GP using the mean function and priors. note that we also_,
—specify that we

want to estimate the nugget based on our prior, rather than adaptively fitting it
—as we did in

the first go.

gp_map = mogp_emulator.GaussianProcess (simulation_points, simulation_output,
mean=meanfunc, priors=priors, nugget="fit")
gp_map = mogp_emulator.fit_GP_MAP (gp_map)

print ("With mean and priors:")

print ("Mean function parameters = {}".format (gp_map.thetal[:3]))

print ("Correlation lengths = {/".format (np.sgrt (np.exp(-gp_map.thetal[3:5]1))))
print ("Sigma = {/}".format (np.sqgrt (np.exp (gp_map.thetal-2]))))

(continues on next page)

47

Multi-Output GP Emulator Documentation, Release 0.6.0

(continued from previous page)

print ("Nugget = ".format (gp_map.nugget))

Use the new fit GP to predict the validation points and plot to see if this improved
the fit to the true data:

predictions_map = gp_map.predict (validation_points)

if makeplots:
plot_solution (predictions_map.mean, "Mean/Prior emulator", "emulator_ output_ MAP.
—png",
simulation_points, validation_points, tri)

48 Chapter 12. Gaussian Process Demo with Small Sample Size

cHAPTER 13

Uncertainty Quantification Methods

13.1 The MUCM Toolkit, release 6

Welcome to the M UCM Toolkit. The toolkit is a resource for people interested in quantifying and managing uncertainty
in the outputs of mathematical models of complex real-world processes. We refer to such a model as a simulation
model or a simulator.

The toolkit is a large, interconnected set of webpages and one way to use it is just to browse more or less randomly
through it. However, we have also provided some organised starting points and threads through the toolkit.

* We have an introductory tutorial on MUCM methods and uncertainty in simulator outputs /here.

¢ You can read about the roolkit structure.

* The various threads, each of which sets out in a series of steps how to use the MUCM approach to build
an emulator of a simulator and to use it to address some standard problems faced by modellers and users of
simulation models. This release contains the following threads:

ThreadCoreGP, which deals with the simplest emulation scenario, called the core problem, using the
Gaussian process approach;

ThreadCoreBL, which also deals with the core problem, but follows the Bayes linear approach. A simple
guide to the differences between the two approaches can be found in the alternatives page on Gaussian
process or Bayes Linear Emulator (Al/tGPorBLEmulator);,

ThreadVariantMultipleOutputs, which extends the core problem to address the case where we wish to
emulate two or more simulator outputs;

ThreadVariantDynamic, which extends the core analysis in a different direction, where we wish to emulate
the time series output of a dynamic simulator;

ThreadVariantTwoLevelEmulation, which considers the situation where we have two simulators of the
same real-world phenomenon, a slow but relatively accurate simulator whose output we wish to emulate,
and a quick and relatively crude simulator. This thread discusses how to use many runs of the fast simulator
to build an informative prior model for the slow simulator, so that fewer training runs of the slow simulator
are needed;

49

Multi-Output GP Emulator Documentation, Release 0.6.0

— ThreadVariantWithDerivatives, which extends the core analysis for the case where we can obtain deriva-
tives of the simulator output with respect to the various inputs, to use as training data;

— ThreadVariantModelDiscrepancy, which deals with modelling the relationship between the simulator out-
puts and the real-world process being simulated. Recognising this model discrepancy is a crucial step in
making useful predictions from simulators, in calibrating simulation models and handling multiple models.

— ThreadGenericMultipleEmulators, which deals with combining two or more emulators to produce emula-
tion of some combination of the respective simulator outputs;

— ThreadGenericEmulateDerivatives, which shows how to use an emulator to predict the values of deriva-
tives of the simulator output;

— ThreadGenericHistoryMatching, which deals with iteratively narrowing down the region of possible input
values for which the simulator would produce outputs acceptably close to observed data. This topic is
related to calibration, which will be addressed in a future release of the toolkit.

— ThreadTopicSensitivityAnalysis, which is a topic thread providing more detailed background on the topic
of sensitivity analysis, and linking together the various procedures for such techniques in the other toolkit
threads.

— ThreadTopicScreening, which provides a broad view of the idea of screening the simulator inputs to reduce
their dimensionality.

— ThreadTopicExperimentalDesign, which gives a detailed overview of the methods of experimental design
that are relevant to MUCM, particularly those relating to the design of a training sample.

Later releases of the toolkit will add more threads and other material, including more extensive examples to guide
the toolkit user and further Case Studies. In each release we also add more detail to some of the existing threads; for
instance, in this release we have a substantial reworking of the variant thread on emulating multiple outputs, and also
new material on variance learning for Bayes Linear emulation.

13.2 Meta-pages: Toolkit tutorial

13.2.1 Uncertainty in models

Modelling is a vital part of research and development in almost every sphere of modern life. The objective of MUCM
is to develop a technology that is capable of addressing all sources of uncertainty in model predictions and to quantify
their implications efficiently, even in the most complex models. It has the potential to revolutionise scientific debate by
resolving the contradictions in competing models. It will also have a radical effect on everyday modelling and model
usage by making the uncertainties in model outputs transparent to modellers and end users alike.

Those who rely on models to understand complex processes, and for prediction, optimisation and many kinds of
decision- and policy-making, increasingly wish to know how much they can trust the model outputs. Uncertainty and
inaccuracy in the outputs arises from numerous sources, including error in initial conditions, error in model parameters,
imperfect science in the model equations, approximate solutions to model equations and errors in model structure or
logic. The nature and magnitudes of these contributory uncertainties are often very difficult to estimate, but it is vital
to do so. All the while, for instance, different models produce very different predictions of the magnitude of global
warming effects, with no credible error bounds, sceptics can continue to ignore them and pressure groups will seize
upon the most pessimistic predictions.

Even if we can quantify all uncertainties in model inputs and structure, it is a complex task to derive appropriate
measures of output uncertainty. One well-established methodology to address this problem of uncertainty analysis, or
probabilistic sensitivity analysis, is to propagate input uncertainty through the model by Monte Carlo. However, this
requires making typically tens of thousands of runs of the model, each with different randomly sampled inputs, and
this is impractical for complex models. For any model that takes more than a few seconds of computer time per run, a
thorough Monte Carlo sensitivity analysis becomes infeasible.

50 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

MUCM focuses on new methods which are orders of magnitude more efficient than Monte Carlo, requiring typically
just a few hundreds of model runs, thereby providing very significant productivity gains for the researchers or anal-
ysis teams involved. Furthermore, these methods can address several related, but more demanding tasks that are of
importance to modellers and model users, usually without requiring more model runs.

e Calibration and data assimilation. Calibration, the process of adjusting uncertain model parameters to fit the
model to observed data, is typically a very demanding task that can involve many man months or even years
of effort. Data assimilation, in which data are used to adjust the state vector of a dynamic model, is equally
demanding and the subject of quite intensive research in its own right. MUCM methods can not only perform
these tasks more efficiently, but also properly characterise how they reduce uncertainty about those parameters
and state vector (and hence reduce uncertainty in model outputs).

* Variance-based sensitivity analysis and value of information. These are tools to explore how the model responds
to changes in inputs, and the contribution that each uncertain input makes to the overall output uncertainty. They
give modellers insight into how their models behave (often pointing to bugs in coding or model failures) and
allow model users to prioritise research to reduce uncertainty.

* Validation and structural uncertainty. It is often said that models cannot be validated since no model is perfect.
Nevertheless, it is possible to validate the combination of a model with a description of uncertainty, simply by
computing implied probability distributions for test data and then verifying that they lie within the bounds of
those distributions. However, this requires all forms of uncertainty to be accounted for, including uncertainty in
model structure, and cannot be addressed by conventional Monte Carlo analyses. MUCM methods are able to
tackle this problem, and indeed a model for model discrepancy underlies the calibration techniques.

13.2.2 Emulation

We refer to the process model to which MUCM methods are applied (and its implementation in computer code) as the
simulator. The key to MUCM technology is the idea of an emulator, which is a statistical representation of knowledge
and beliefs about the simulator. The emulator is not just a very accurate approximation to the simulator itself, but also
incorporates a statistically validated description of its own accuracy. It is created using a set of runs of the simulator,
in which the simulator outputs are observed at different points in the input space. This is called the training sample.

Emulator for a simple model based on 3 data points

Figure 1 illustrates how the emulator works in an extremely simple case. The simulator is supposed to be a function
of a single input . Three training runs have been performed and the output computed at z = 1,3 and 5; these are
the three points marked in the figure. The solid line is the emulator mean, which is a prediction of what the simulator
would produce if run at any other value of z. The dotted lines give 95% probability intervals for those predictions.
Notice that the emulator interpolates the training data precisely and correctly shows no uncertainty at those points, but
the uncertainty increases between training data points.

Figure 2 shows the same example after we add two more training runs. The emulator mean is adjusted to pass through
the two new points, and the uncertainty is reduced considerably. Indeed, within the range of the training data the
emulator now predicts the simulator output with very small uncertainty.

Properties of the emulator

The same features apply in any application with any number of inputs: the emulator reproduces the training data
exactly, interpolating them smoothly with uncertainty that increases between data points. Increasing the number of
training data points, so that they are closer together, in principle allows the simulator to be emulated to any desired
degree of accuracy, with small uncertainty throughout the region of the input space of interest.

The emulator runs essentially instantaneously, making intensive exploration of the model and the consequences of un-
certainty in inputs and model structure feasible for even highly complex models. Its mathematical form is also simple,

13.2. Meta-pages: Toolkit tutorial 51

Multi-Output GP Emulator Documentation, Release 0.6.0

Fig. 1: Figure 1: An example of an emulator fit so a small number of training points.

O = N W h~h O O ~N 0w ©

Fig. 2: Figure 2: Additional points reduce the uncertainty of the emulator.

52 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

so that in many cases the results of complex analyses of simulator output, such as sensitivity analysis, can be predicted
analytically without needing to ‘run’ the emulator. In other situations, the analyses can be performed very much more
quickly by running the emulator as a surrogate for the simulator, which may make feasible analyses that would other-
wise be impossible because of computational intensity. Traditional approaches to tasks such as uncertainty analysis,
particularly those based on Monte Carlo sampling in the input space, have been found in a range of applications to be
orders of magnitude less efficient. That is, to achieve comparable accuracy those methods require tens, hundreds or
even thousands of times as many simulator runs as MUCM methods based on emulation.

13.2.3 Toolkit issues

Although conceptually simple, the MUCM methods can be complex to apply. The role of the toolkit is to provide
straightforward specifications of the MUCM technology. It is aimed at users of process simulators who wish to
understand and manage the uncertainties in simulator predictions, and for other researchers in this field. Toolkit
“threads” take the user step by step through building emulators and using them to tackle questions such as sensitivity
analysis or calibration. In any application, a number of decisions need to be taken concerning questions such as the
detailed form of the emulator; here are some of the principal issues that are addressed in toolkit pages.

e Type of emulator. In MUCM two different approaches to emulation are the fully Bayesian approach based on
Gaussian process emulators and the Bayes linear approach which does not make distributional assumptions.
The alternative approaches have advantages in different situations, but the principal distinction between them is
a fundamental difference in how uncertainty is represented.

 Training sample design. The creation of a suitable training sample is a key step. This problem raises interesting
new challenges for statistical experimental design theory. Although in principle we can emulate the simulator
very accurately with a large enough training sample, in practice a large number of simulator runs is often
impractical, and careful design is necessary to get the most out of a limited number of training runs.

* Fitting the emulator. Within the theory of the emulator are a number of optional features and parameters to
be estimated. There are statistical and computational challenges here that are addressed in the relevant toolkit

pages.

* Validating the emulator. The emulator may claim high accuracy in representing the underlying simulator, but is
that claim justified? Validation uses a second sample of simulator runs to check the validity of the emulator’s
claims.

¢ Model discrepancy. No model is perfect, and no simulator is a perfect representation of the real-world process it
simulates. Techniques such as calibration rely on contrasting simulator outputs with real-world observations. It
is vital to recognise that the real-world observations differ from the simulator output because of simulator error
as well as observation error. An integral part of the MUCM technology is understanding model discrepancy.

13.3 Meta-pages: Notation

This page sets out the notational conventions used in the MUCM toolkit.

13.3.1 General Conventions

Vectors and matrices

Vectors in the toolkit can be either row (1 x n) or column (n X 1) vectors. When not specified explicitly, a vector is a
column vector by default.

We do not identify vectors or matrices by bold face.

13.3. Meta-pages: Notation 53

Multi-Output GP Emulator Documentation, Release 0.6.0

Functions

Functions are denoted with a dot argument, e.g. f(-), while their value at a point x is f(z).

The following compact notation is used for arrays of function values. Suppose that g(-) is a function taking values
in some space, and let D be a vector with n elements D = {x1, 22, ..., 2, } in that space; then g(D) is made up of
the function values g(x1), g(z2), ..., g(z,). More specifically, we have the following cases:

* If g(x) is a scalar, then g(D) is a (n x 1) (column) vector by default, unless explicitly defined as a (1 x n) (row)
vector.

* If g(x) is a (¢t x 1) column vector, then g(D) is a matrix of dimension ¢ X n.
o If g(z) is a (1 x) row vector, then g(D) is a matrix of dimension (n X t).

o If g(x, ') is a scalar, then g(D, ") is a (n x 1) column vector, g(x, D’) is a (1 x n) row vector and g(D, D')
is a (n x n) matrix.

Other notation

The * superscript denotes a posterior value or function.
The matrix/vector transpose is denoted with a roman superscript T.
Expectations, Variances and Covariances are denoted as E[-], Var[-], Cov[-, -].

The trace of a matrix is denoted as tr.

13.3.2 Reserved symbols

The following is a list of symbols that represent fundamental quantities across the toolkit. These reserved symbols
will always represent quantities of the same generic type in the toolkit. For instance, the symbol n will always denote
a number of design points. Where two or more different designs are considered in a toolkit page, their sizes will be
distinguished by subscripts or superscripts, e.g. n; might be the size of a training sample design, while n,, is the size
of a validation design. Notation should always be defined properly in toolkit pages, but the use of reserved symbols
has mnemonic value to assist the reader in remembering the meanings of different symbols.

The reserved symbols comprise a relatively small set of symbols (and note that if only a lower-case symbol is reserved
the corresponding upper-case symbol is not). Non-reserved symbols have no special meanings in the toolkit.

54 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

Symbol Meaning
Dimensions
n Number of design points
p Number of active inputs
q Number of basis functions
r Number of outputs
s Number of hyperparameter sets in an emulator
Input - Output
T Point in the simulator’s input space
Reality - the actual system value
z Observation of reality y
D Design, comprising an ordered set of points in an input space
d() Model discrepancy function
f@) The output(s) of a simulator
h(-) Vector of basis functions
Hyperparameters
I5) Hyperparameters of a mean function
) Hyperparameters of a correlation function
o2 Scale hyperparameter for a covariance function
0 Collection of hyperparameters on which the emulator is conditioned
v Nugget
71' Distribution of hyperparameters
Statistics
m(-) Mean function
v(+,) Covariance function
m*(-) Emulator’s posterior mean, conditioned on the hyperparameters and design points
v*(+,) Emulator’s posterior covariance, conditioned on the hyperparameters and design points
e+,) Correlation function

13.4 Meta-pages: Comments

The MUCM team is interested to receive your comments on the toolkit. You can send comments about particular
pages (to tell us of errors or alternative approaches, or to give us the benefit of your own knowledge and experience
with MUCM-related ideas and methods). You can also send us comments about the toolkit in general: (Do you like
it? How could we improve it generally? What features would you like to see? How could we organise it better?).

Please send your comments to the webmaster.

13.5 Meta-pages: Toolkit Structure

13.5.1 Main threads

The toolkit contains a large number of pages, and there are several ways to use it. One would be just to browse - pick
a page from this page list and just follow connections - but we have also created more structured entry points. The
first of these is the set of main threads. These will take the user through the complete process of a MUCM application
- designing and building an emulator to represent a simulator, and then using it to carry out tasks such as sensitivity
analysis or calibration.

The simplest main threads are the core threads. There are two of these, one for the Gaussian Process (GP, or fully

13.4. Meta-pages: Comments 55

mailto:I.Andrianakis@soton.ac.uk

Multi-Output GP Emulator Documentation, Release 0.6.0

Bayesian) version of the core, and one for the Bayes Linear (BL) version. The underlying differences between these
two approaches are discussed in the alternatives page on Gaussian Process or Bayes Linear based emulator (Al/tGPor-
BLEmulator). In both cases, the core thread deals with developing emulators for a single output of a simulator that
is deterministic. Further details of the core model are given in the threads themselves, ThreadCoreGP and Thread-
CoreBL.

Further main threads deal with variations on the basic core model. In principle, these threads will try to handle both
GP and BL approaches. However, there will be various components of these threads where the relevant tools have
only been developed fully for one of the two approaches, and methods for the other approach will only be discussed
in general terms.

Other main threads will address generic extensions that apply to both core and variant threads.
The main threads are currently planned to be as follows:
» ThreadCoreGP - the core model, dealt with by fully Bayesian, Gaussian Process, emulation
e ThreadCoreBL - the core model, dealt with by Bayes Linear emulation

* ThreadVariantMultipleOutputs - a variant of the core model in which we emulate more than one output of a
simulator

* ThreadVariantDynamic - a special case of multiple outputs is when the simulator outputs are generated itera-
tively as a time series

* ThreadVariantTwoLevel Emulation - a variant in which a fast simulator is used to help build an emulator of a
slow simulator

* ThreadVariantMultipleSimulators - variant of the core model in which we emulate outputs from more than one
related simulator, a special case of which is when the real world is regarded as a perfect simulator

 ThreadVariantStochastic - variant of the core model in which the simulator output is stochastic
* ThreadVariantWithDerivatives - variant of the core model in which we include derivative information

» ThreadVariantModelDiscrepancy - a variant that deals with modelling the relationship between the simulator
outputs and the real-world process being simulated

* ThreadGenericMultipleEmulators - a thread showing how to combine independent emulators (for outputs of
different simulators or different outputs of one simulator) to address tasks relating to combinations of the outputs
being simulated

* ThreadGenericEmulateDerivatives - a thread showing how to emulate derivatives of outputs

* ThreadGenericHistoryMatching - a thread using observations of the real system to learn about the inputs of the
model

It should be noted that simulators certainly exist in which we need to take account of more than one of the variations.
For instance, we may be interested in multiple outputs which are also stochastic. Where the relevant tools have been
developed, they will be included through cross-linkages between the main threads, or by additional main threads.

The toolkit is being released to the public in stages, so that only some of the threads are currently available. Others
will be included in future releases.

13.5.2 Topic Threads

Another way to use the toolkit is provided through a number of topic threads. Whereas the various main threads take
the user through the process of modelling, building an emulator and using that emulator to carry out relevant tasks,
a topic thread focusses on a particular aspect of that process. For instance, a topic thread could deal with issues of
modelling, and would describe the core model, variants on it associated with the other main threads, and go on to more
complex variants for which tools are as yet unavailable or are under development. Another topic thread might consider
the design of training samples for building an emulator, or the task of sensitivity analysis.

56 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

Topic threads provide a technical background to their topics that is common across different kinds of emulators. They
allow toolkit users to gain a more in-depth understanding and to appreciate relationships between how the topic is
addressed in different main threads. Whereas the main threads are aimed at toolkit users who wish to apply the
MUCM tools, the topic threads will be intended more for researchers in the field or for users who want to gain a
deeper understanding of the tools.

Topic threads now available or under development include:
* ThreadTopicSensitivityAnalysis
e ThreadTopicScreening

» ThreadTopicExperimentalDesign

13.5.3 Other Page Types

Apart from the Threads, the other pages of the Toolkit belong to one of the following categories

* Procedure - The description of an operation or an algorithm. Procedure pages should provide sufficient infor-
mation to allow the implementation of the operation that is being described.

* Discussion - Pages that discuss issues that may arise during the implementation of a method, or other optional
details.

» Alternatives - These pages present available options when building a specific part of an emulator (e.g. choosing
a covariance function) and provide some guidance for doing the selection.

¢ Definition - Definition of a term or a concept.
* Example - A page that provides a worked example of a thread or procedure.
* Meta - Any page that does not fall in one of the above categories, usually pages about the Toolkit itself.

Page types are identifiable by the start of the page name - Thread, Proc, Disc, Alt, Def, Exam or Meta.

13.6 Meta-pages: Page List

This is a complete list of the pages that will comprise the sixth release. Pages that have been modified since release 5
are marked * , while pages that are new in release 6 are marked **.

13.6.1 Generic pages

e AltGPorBLEmulator

* MetaComments

* MetaCopyrightNotice

* MetaHomePage *

* MetaNotation

* MetaSoftwareDisclaimer
* MetaToolkitPageList *

* MetaToolkitStructure *

o MetaToolkitTutorial

13.6. Meta-pages: Page List 57

Multi-Output GP Emulator Documentation, Release 0.6.0

13.6.2 Definition/Glossary pages

DefActivelnput
DefAdjoint
DefAssessment
DefBasisFunctions
DefBayesian
DefBayesLinear
DefBestInput
DefBLAdjust
DefBLVarianceLearning *
DefCalibration
DefCodeUncertainty
DefConjugate
DefCorrelationLength
DefDataAssimilation
DefDecisionBasedSA
DefDesign
DefDeterministic
DefDynamic
DefElicitation
DefEmulator
DefExchangeability **
DefForcingInput

DefGP
DefHistoryMatching **
DefHyperparameter
DeflmplausibilityMeasure **
DefInactivelnput
DefModelBasedDesign**
DefModelDiscrepancy
DefMUCM
DefMultilevel Emulation
DefMultivariateGP *
DefMultivariateTProcess *
DefNugget

DefPrincipal ComponentAnalysis

58

Chapter 13

. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

* DefProper

* DefRegularity

* DefRelification

* DefScreening

* DefSecondOrderExch **
* DefSecondOrderSpec

* DefSensitivityAnalysis
* DefSeparable

* DefSimulator

* DefSingleStepFunction
* DefSmoothingKernel **
e DefSmoothness

* DefSpaceFillingDesign**
* DefStateVector

e DefStochastic

* DefTProcess

* DefTrainingSample

* DefUncertaintyAnalysis
* DefValidation

* DefVarianceBasedSA

* DefWeakPrior

13.6.3 GP core thread

* ThreadCoreGP *

e AltCoreDesign *

e AltCorrelationFunction
* AltEstimateDelta

* AltGPPriors

* AltMeanFunction *

* DiscActivelnputs

* DiscBuildCoreGP

e DiscCore

e DiscCoreDesign *

* DiscCoreValidationDesign
* DiscCovarianceFunction

* DiscGaussianAssumption

13.6. Meta-pages: Page List 59

Multi-Output GP Emulator Documentation, Release 0.6.0

DiscGPBasedEmulator
DiscPostModeDelta
DiscRealisationDesign
DiscUANugget
ExamCoreGPI1Dim
ExamCoreGP2Dim
ProcApproxDeltaPosterior
ProcBuildCoreGP
ProcHaltonDesign
ProcLatticeDesign
ProcLHC
ProcMCMCDeltaCoreGP
ProcOptimalLHC
ProcOutputTransformation
ProcPivotedCholesky
ProcPredictGP
ProcSimulationBasedInference
ProcUAGP
ProcValidateCoreGP
ProcVarSAGP
ProcWeylDesign

13.6.4 BL core thread

ThreadCoreBL *
AltBasisFunctions
AltBLPriors
DiscAdjustExchBeliefs **
DiscBayesLinearTheory
DiscStructuredMeanFunction
ProcBLAdjust
ProcBLPredict
ProcBuildCoreBL
ProcUABL
ProcVariogram

ProcBLVarianceLearning **

60

Chapter 13

. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

13.6.5 Multiple outputs variant thread

e ThreadVariantMultipleOutputs *

AltMeanFunctionMultivariate **

AltMultipleOutputsApproach *

AltMultivariateCovarianceStructures **

e AltMultivariateGPPriors *

ExamMultipleOutputs **

ExamMultipleOutputsPCA *
ProcBuildMultiOutputGP *

ProcBuildMultiOutputGPSep **

ProcOutputsPrincipal Components

ProcPredictMultiOutputFunction **

13.6.6 Dynamic emulation variant thread

* ThreadVariantDynamic

e AltDynamicEmulationApproach

AltlteratingSingleStepEmulators

* DiscUncertaintyAnalysis

DiscMonteCarlo
* ProcApproximatelterateSingleStepEmulator

* ProcApproximateUpdateDynamicMeanandVariance

ProcExactlterateSingleStepEmulator

ProcExploreFullSimulatorDesignRegion

ProcOutputSample

ProcUADynamicEmulator

* ProcUpdateDynamicMeanAndVariance

13.6.7 Two-level emulation variant thread

e ThreadVariantTwoLevelEmulation

* ProcBuildCoreBLEmpirical

13.6.8 Derivatives variant and generic threads

e ThreadVariantWithDerivatives
e ProcBuildWithDerivsGP

e ExamVariantWithDerivativesIDim

13.6. Meta-pages: Page List 61

Multi-Output GP Emulator Documentation, Release 0.6.0

e ThreadGenericEmulateDerivatives

e ProcBuildEmulateDerivsGP

13.6.9 Linking Models to Reality Variant Thread

» ThreadVariantModelDiscrepancy
e DiscWhyModelDiscrepancy
* DiscBestInput

* DiscObservations

* DiscExpertAssessMD

* DiscInformalAssessMD

* DiscFormalAssessMD

* DiscStructuredMD

* DiscReification

* DiscReificationTheory

* DiscExchangeableModels

13.6.10 Multiple emulators generic thread

e ThreadGenericMultipleEmulators
* ProcPredictMultipleEmulators

* ProcUAMultipleEmulators

13.6.11 History Matching Generic Thread

» ThreadGenericHistoryMatching**
o AltImplausibilityMeasure**
* DisclmplausibilityCutoff **
* DisclterativeRefocussing**

e ExamlDHistoryMatch**

13.6.12 Topic thread on sensitivity analysis

o ThreadTopicSensitivityAnalysis

* DiscDecisionBasedSA

* DiscSensitivityAndDecision

* DiscSensitivityAndOutputUncertainty
* DiscSensitivityAndSimplification

* DiscToolkitSensitivityAnalysis

62

Chapter 13

. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

* DiscVarianceBasedSA
* DiscVarianceBasedSATheory
* DiscWhyProbabilisticSA

o ExamDecisionBasedSA

13.6.13 Topic thread on screening

» ThreadTopicScreening

* AltScreeningChoice

* ExamScreeningAutomaticRelevanceDetermination
* ExamScreeningMorris

* ProcAutomaticRelevanceDetermination

e ProcDataPreProcessing

e ProcMorris

13.6.14 Topic thread on Design of Experiments

» ThreadTopicExperimentalDesign**
* AltNumericalSolutionForKarhunenLoeveExpansion**
* AltOptimalCriteria**

* AltOptimalDesignAlgorithms**

e DiscFactorialDesign**

* DiscKarhunenLoeveExpansion**

* DiscSobol **

* ProcASCM**

* ProcBranchAndBoundAlgorithm**

* ProcExchangeAlgorithm**

* ProcFourierExpansionForKL**

* ProcHaarWaveletExpansionForKL**

* ProcSobolSequence**

13.7 Meta-pages: Copyright Notice

The MUCM toolkit is produced by the MUCM project and copyright in all the toolkit pages is held on behalf of the
participating institutions (University of Sheffield, Durham University, Aston University, London School of Economics
and the National Oceanography Centre, Southampton) by the MUCM Management Board.

Pages may not be copied in whole or in part or quoted from without full acknowledgement being made to the MUCM
toolkit. The URL(s) of the page(s) concerned must be included in all such acknowledgements.

Further information, requests and enquiries concerning reproduction and rights should be addressed to:

13.7. Meta-pages: Copyright Notice 63

Multi-Output GP Emulator Documentation, Release 0.6.0

Managing Uncertainty in Complex Models
Department of Probability & Statistics
University of Sheffield

Hicks Building

Hounsfield Road

Sheffield

S3 7RH

UK

Tel : +44 (0) 114 222 3753

E mail: mucm @sheffieldNOSPAM.ac.uk

Disclaimer

Information at this site is general information provided as part of the RCUK Managing Uncertainty in Complex Models
project. We aim to ensure that all information we maintain is accurate, current and fit for the purpose intended.
However it does not constitute legal or other professional advice. Neither the MUCM consortium, or its funders
RCUK, nor any of the sources of the information shall be responsible for any errors or omissions, or for the use of or
results obtained from the use of this information.

Links to and from this site are for convenience only and do not mean that MUCM endorses or approves them. We
cannot guarantee that these links will work all of the time and we have no control over the availability of linked pages.
We will strive to maintain them and would be grateful to receive information on any broken links if found in order
that we can review them. It is the responsibility of the internet user to make their own decisions about the accuracy,
currency, reliability and correctness of information found at sites linked from this website.

13.8 Meta-pages: Software Disclaimer

Information at this site is general information provided as part of the RCUK Manging Uncertainties in Complex
Models project. We aim to ensure that all information we maintain is accurate, current and fit for the purpose intended.
However it does not constitute legal or other professional advice. Neither the M/UCM consortium, or its funders RCUK,
nor any of the sources of the information shall be responsible for any errors or omissions, or for the use of or results
obtained from the use of this information.

The MUCM toolkit includes references in various places to software that we believe is available to carry out some of
the toolkit procedures. Users of the toolkit should note, however, that software does not form part of the toolkit and
such references are for convenience only. The MUCM consortium makes no endorsement or warranties about any
software referred to in the toolkit, and is not responsible for the quality, reliability, accuracy or safety of such software.
This includes both software produced by consortium members or by others.

13.9 Thread: Analysis of the core model using Gaussian Process
methods

13.9.1 Overview
The principal user entry points to the MUCM toolkit are the various threads, as explained in the Toolkit Structure. The
main threads give detailed instructions for building and using emulators in various contexts.

This thread takes the user through the analysis of the most basic kind of problem, using the fully Bayesian approach
based on a Gaussian process (GP) emulator. We characterise a core problem or model as follows:

64 Chapter 13. Uncertainty Quantification Methods

mailto:mucm@sheffieldNOSPAM.ac.uk

Multi-Output GP Emulator Documentation, Release 0.6.0

* We are only concerned with one simulator.
* The simulator only produces one output, or (more realistically) we are only interested in one output.
» The output is deterministic.
* We do not have observations of the real world process against which to compare the simulator.
* We do not wish to make statements about the real world process.
* We cannot directly observe derivatives of the simulator.
Each of these aspects of the core problem is discussed further in page DiscCore.
The fully Bayesian approach has a further restriction:
* We are prepared to represent the simulator as a Gaussian process.
See also the discussion page on the Gaussian assumption (DiscGaussianAssumption).

This thread comprises a number of key stages in developing and using the emulator.

13.9.2 Active inputs

Before beginning to develop the emulator, it is necessary to decide what inputs to the simulator will be varied. Complex
simulators often have many inputs and many outputs. In the core problem, only one output is of interest and we
assume that this has already been identified. It may also be necessary to restrict the number of inputs that will be
represented in the emulator. The distinction between active inputs and inactive inputs is considered in the discussion
page DiscActivelnputs.

Once the active inputs have been determined, we will refer to these simply as the inputs, and we denote the number of
(active) inputs by p.

13.9.3 The GP model

The first stage in building the emulator is to model the mean and covariance structures of the Gaussian process that is
to represent the simulator. As explained in the definition of a Gaussian process (DefGP), a GP is characterised by a
mean function and a covariance function. We model these functions to represent prior beliefs that we have about the
simulator, i.e. beliefs about the simulator prior to incorporating information from the training sample.

The choice of a mean function is considered in the alternatives page AltMeanFunction. In general, the choice will lead
to the mean function depending on a set of hyperparameters that we will denote by £.

The most common approach is to define the mean function to have the linear form m(z) = h(x)* 3, where h(-) is a
vector of regressor functions, whose specification is part of the choice to be made. For appropriate ways to model the
mean, both generally and in linear form, see AltMeanFunction.

The GP covariance function is discussed in page DiscCovarianceFunction. Within the toolkit we will assume that the
covariance function takes the form o2c(-,-), where o2 is an unknown scale hyperparameter and c(-, -) is called the
correlation function indexed by a set of correlation hyperparameters §. The choice of the emulator prior correlation
function is considered in the alternatives page AltCorrelationFunction.

The most common approach is to define the correlation function to have the Gaussian form c¢(x, z') = exp{—(x —
2)TC(x — 2)}, where C is a diagonal matrix with elements the inverse squares of the elements of the § vector. A
slightly more complex form is the Gaussian with nugget, c(z, 2') = vl,—p + (1 — v) exp{—(z — 2")TC(x — 2')},
where the nugget v may represent effects of inactive variables and the expression I,—, takes the value 1 if z = 2’
and otherwise is 0. See AltCorrelationFunction for more details.

The techniques that follow in this thread will be expressed as far as possible in terms of the general forms of the
mean and covariance functions, depending on general hyperparameters 3, o2 and §. However, in many cases, simpler

13.9. Thread: Analysis of the core model using Gaussian Process methods 65

Multi-Output GP Emulator Documentation, Release 0.6.0

formulae and methods can be developed when the linear and Gaussian forms are chosen, and some techniques in this
thread may only be available in the special cases.

13.9.4 Prior distributions

The GP modelling stage will have described the mean and covariance structures in terms of some hyperparameters. A
fully Bayesian approach now requires that we express probability distributions for these that are again prior distribu-
tions. Possible forms of prior distribution are discussed in the alternatives page on prior distributions for GP hyperpa-
rameters (A/tGPPriors). The result is in general a joint distribution (3,02,). Where required, we will denote the
marginal distribution of § by 7s(-), and similarly for marginal distributions of other groups of hyperparameters.

13.9.5 Design

The next step is to create a design, which consists of a set of points in the input space at which the simulator is to be
run to create the training sample. Design options for the core problem are discussed in the alternatives page on training
sample design for the core problem (AltCoreDesign).

The result of applying one of the design procedures described there is an ordered set of points D = {1, 22, ..., Zn}.
The simulator f(-) is then run at each of these input configurations, producing a vector f(D) of n elements, whose
i-th element f(x;) is the output produced by the simulator from the run with inputs z;.

One suggestion that is commonly made for the choice of the sample size n is n = 10p, where p is the number of
inputs. (This may typically be enough to obtain an initial fit, but additional simulator runs are likely to be needed for
the purposes of validation, and then to address problems raised in the validation diagnostics as discussed below.)

13.9.6 Fitting the emulator

Given the training sample and the GP prior model, the procedure for building a GP emulator for the core problem is
theoretically straightforward, and is set out in page ProcBuildCoreGP. Nevertheless, there are several computational
difficulties that are discussed there.

The result of ProcBuildCoreGP is the emulator, fitted to the prior information and training data. As discussed fully in
the page on forms of GP based emulators (DiscGPBasedEmulator), the emulator has two parts, an updated GP (or a re-
lated process called a -process) conditional on hyperparameters, plus one or more sets of representative values of those
hyperparameters. Addressing the tasks below will then consist of computing solutions for each set of hyperparameter
values (using the GP or t-process) and then an appropriate form of averaging of the resulting solutions.

Although the fitted emulator will correctly represent the information in the training data, it is always important to
validate it against additional simulator runs. The procedure for validating a Gaussian process emulator is described
in page ProcValidateCoreGP. It is often necessary, in response to the validation diagnostics, to rebuild the emulator
using additional training runs.

13.9.7 Tasks

Having obtained a working emulator, the MUCM methodology now enables efficient analysis of a number of tasks
that regularly face users of simulators.

Prediction

The simplest of these tasks is to use the emulator as a fast surrogate for the simulator, i.e. to predict what output the
simulator would produce if run at a new point in the input space. The procedure for predicting the simulator’s output
in one or more new points is set out in page ProcPredictGP.

66 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

For some of the tasks considered below, we require to predict the output not at a set of discrete points, but in effect the
entire output function as the inputs vary over some range. This can be achieved also using simulation, as discussed in
the procedure page for simulating realisations of an emulator (ProcSimulationBasedInference).

Uncertainty analysis

Uncertainty analysis is the process of predicting the simulator output when one or more of the inputs are uncertain.
The procedure page for performing uncertainty analysis using a GP emulator (ProcUAGP) explains how this is done.

Sensitivity analysis

In sensitivity analysis the objective is to understand how the output responds to changes in individual inputs or groups
of inputs. The procedure page for variance based sensitivity analysis using a GP emulator (ProcVarSAGP) gives details
of carrying out variance based sensitivity analysis.

13.9.8 Examples

* One dimensional example

* Two dimensional example with uncertainty and sensitivity analysis

13.9.9 Additional Comments, References, and Links

Other tasks that can be addressed include optimisation (finding the values of one or more inputs that will minimise or
maximise the output) and decision analysis (finding an optimal decision according to a formal description of utilities).
A related task is decision-based sensitivity analysis. We expect to add procedures for these tasks for the core problem
in due course.

Another task that is very often required is calibration. This requires us to think about the relationship between the
simulator and reality, which is dealt with in ThreadVariantModelDiscrepancy. Tasks involving observations of the real
process are explicitly excluded from the core problem.

13.10 Thread: Bayes linear emulation for the core model

13.10.1 Overview

This page takes the user through the construction and analysis of an emulator for a simple univariate computer simu-
lator — the core problem. The approach described here employs Bayes linear methods.

13.10.2 Requirements

The method and techniques described in this page are applicable when we satisfy the following requirements:
* We are considering a core problem with the following features:
— We are only concerned with one simulator.
— The simulator only produces one output, or (more realistically) we are only interested in one output.

— The output is deterministic.

13.10. Thread: Bayes linear emulation for the core model 67

Multi-Output GP Emulator Documentation, Release 0.6.0

— We do not have observations of the real world process against which to compare the simulator.
— We do not wish to make statements about the real world process.
— We cannot directly observe derivatives of the simulator.

* We are prepared to represent our beliefs about the simulator with a second-order specification and so are fol-
lowing the Bayes linear approach

13.10.3 The Bayes linear emulator

The Bayes linear approach to emulation is (comparatively) simple in terms of belief specification and analysis, requir-
ing only mean, variance and covariance specifications for the uncertain output of the computer model rather than a full
joint probability distribution for the entire collection of uncertain computer model output. For a detailed discussion
of Bayes linear methods, see DiscBayesLinearTheory; for discussion of Bayes linear methods in comparison to the
Gaussian process approach to emulation, see AltGPorBLEmulator.

Our belief specification for the univariate deterministic simulator is given by the Bayes linear emulator of the simulator
f(x) which takes the a linear mean function in the following structural form:

Fl@) =D B hy(@) +w(@)

In this formulation, 8 = (f1,...,08,) are unknown scalars, h(x) = (hi(z),...,hy(z)) are known deterministic
functions of -, and w() is a stochastic residual process. Thus our mean function has the linear form m(z) = h(z)? 3.

Thus our belief specification for the computer model can be expressed in terms of beliefs about two components. The
component h” ()3 is a linear trend term that expresses our beliefs about the global variation in f, namely that portion
of the variation in f(x) which we can resolve without having to make evaluations for f at input choices which are
near to x. The residual w(x) expresses local variation, which we take to be a weakly stationary stochastic process
with constant variance o2 (for a discussion on the covariance function see DiscCovarianceFunction), and a specified
correlation function c(x, ") which is parametrised by correlation hyperparameters 6. We treat 3 and w(x) as being
uncorrelated a priori. The advantages of including a structured mean function, such as the linear form used here, are
discussed in DiscStructuredMeanFunction.

13.10.4 Emulator prior specification
Given the emulator structure described above, in order to construct a Bayes linear emulator for a given simulator f(x)
we require the following ingredients:
* The form of the trend basis functions h(z)
¢ Expectations, variances, and covariances for the trend coefficients 5
* Expectation of the residual process w(x) at a given input z
* The form of the residual covariance function ¢(z, x’)
* One of:
1. Specified values for the residual variance o and correlation hyperparameters §,
2. Expectations, variances and covariances for (o2, §)
3. A sufficiently large number of model evaluations to estimate (02, §) empirically

These specifications are used to represent our prior beliefs that we have about the simulator before incorporating
information from the training sample. We now discuss obtaining appropriate specifications for each of these quantities.

68 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

Choosing the form of i(x)

For Bayes linear emulation, the emphasis of the emulator is often placed on a detailed structural representation of
the simulator’s mean behaviour. Therefore the choice of trend basis function is a key component of the BL emulator.
This choice can be made directly by an expert or by empirical investigation of a large sample of simulator evaluations.
Methods for determining appropriate choices of h(z) are discussed in the alternatives page on basis functions for the
emulator mean (AltBasisFunctions).

Choosing the form of ¢(x, ')

If the simulator’s behaviour is well-captured by the chosen mean function, then the proportion of variation in the
simulator output that is explained by the residual stochastic process is quite small making the choice of the form for
¢(x,x") less influential in subsequent analyses. Nonetheless, alternatives on the emulator prior correlation function
are considered in AltCorrelationFunction. A typical choice is the Gaussian correlation function for the residuals.

If we have chosen to work with active inputs in the mean function, then the covariance function often includes a
nugget term, representing the variation in the output of the simulator which is not explained by the active inputs. See
the discussion page on active and inactive inputs (DiscActivelnputs).

Belief specifications for 3, o2, and §

The emulator modelling stage will have described the form of the mean and covariance structures in terms of some
hyperparameters. A Bayes linear approach now requires that we express our prior beliefs about these hyperparameters.

Given the specified trend functions h(z), we now require an expectation and variance for each coefficient 5; and a
covariance between every pair (3, 3)). We additionally require a specification of values for the residual variance o2
and the correlation function parameters §. Depending on the availability of expert information and the level of detail
of the specification, this may take the form of (a) expert-specified point values, (b) expert-specified expectations and
variances, (c) empirically obtained numerical estimates.

As with the basis functions, these specifications can either be made from expert judgement or via data analysis when
there are sufficient simulator evaluations. Further details on making these specifications are described in the alterna-
tives page on prior specification for BL hyperparameters (A/tBLPriors).

13.10.5 Design

The next step is to create a design, which consists of a set of points in the input space at which the simulator is to
be run to create the training sample. Alternative choices on training sample design for the core problem are given in
AltCoreDesign.

The result of applying one of the design procedures described there is a matrix of n points X = (z1,...,2,)7.
The simulator is then run at each of these input configurations, producing an n-vector f(X) of elements, whose i-th
element is the output f(z;) produced by the simulator from the run with inputs ;.

13.10.6 Building the emulator
Empirical construction from runs only

If the prior information is weak and the amount of available data is large, then any Bayesian posterior would be
dominated by the data. Thus given a specified form for the simulator mean function, we can estimate 3 and o2 via
standard regression techniques. This will give estimates B and 62 which can be treated as adjusted/posterior values for
those parameters given the data. The procedure for the empirical construction of a Bayes linear emulator is described
in ProcBuildCoreBLEmpirical.

13.10. Thread: Bayes linear emulation for the core model 69

Multi-Output GP Emulator Documentation, Release 0.6.0

Bayes linear assessment of the emulator

Given the output f(X'), we make a Bayes linear adjustment of the trend coefficients /5 and the residual function w(x).
This adjustment requires the specification of a prior mean and variance 3, a covariance specification for w(x), and
specified values for 02 and §. Given the design, model runs and the prior BL emulator the process of adjusting /3 and
w(z) is described in the procedure page for building a BL emulator for the core problem (ProcBuildCoreBL).

Bayes linear adjustment for residual variance and correlation functions

Before carrying out the Bayes linear assessment as described above, we may learn about the residual variance via
Bayes linear variance learning. Consequently, we additionally require a second-order prior specification for o2 which
may come from expert elicitation or analysis of fast approximate models. The procedure for adjusting our beliefs
about the emulator residual variance is described in ProcBLVarianceLearning.

We may similarly use Bayes linear variance learning methods for updating our beliefs about the correlation function
(and hence §.)

Bayes linear emulator construction with uncertain variance and correlation hyperparameters will be developed in a
later version of the Toolkit.

13.10.7 Diagnostics and validation

Although the fitted emulator will correctly represent the information in the simulator runs, it is always important
to validate it against additional model evaluations runs. We assess this by applying the diagnostic checks and, if
necessary, rebuilding the emulator using runs from an additional design.

The procedure page on validating a Gaussian process emulator (ProcValidate CoreGP) describes diagnostics and vali-
dation for GP emulators. This approach is generally applicable to the BL case and so can be used to validate a Bayes
linear emulator. However unlike the GP diagnostic process, the Bayes linear approach would not consider the diag-
nostic values to have particular distribution forms. Specific Bayes linear diagnostics will be developed in a future
version.

13.10.8 Post-emulation tasks

Having obtained a working emulator, the MUCM methodology now enables efficient analysis of a number of tasks
that regularly face users of simulators.

Prediction

The simplest of these tasks is to use the emulator as a fast surrogate for the simulator, i.e. to predict what output the
simulator would produce if run at a new point z in the input space. The procedure for predicting one or more new
points using a BL emulator is set out in ProcBLPredict.

Uncertainty analysis

Uncertainty analysis is the process of predicting the computer model output, when the inputs to the computer model
are also uncertain, thereby exposing the uncertainty in model outputs that is attributable to uncertainty in the inputs.
The Bayes linear approach to such a prediction problem is described in the procedure page on Uncertainty analysis for
a Bayes linear emulator (ProcUABL).

70 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

Sensitivity analysis

In sensitivity analysis the objective is to understand how the output responds to changes in individual inputs or groups
of inputs. In general, when the mean function of the emulator accounts for a large proportion of the variation of the
simulator then the sensitivity of the simulator to changes in the inputs can be investigated by examination of the basis
functions of m(z) and their corresponding coefficients. In the case where the mean function does not explain much
of the simulator variation and the covariance function is Gaussian then the methods of the procedure page on variance
based sensitivity analysis (ProcVarSAGP) are broadly applicable if we are willing to ascribe a prior distributional form
to the simulator input.

13.11 Thread: Generic methods to emulate derivatives

13.11.1 Overview

This thread describes how we can build an emulator with which we can predict the derivatives of the model output
with respect to the inputs. If we have derivative information available, either from an adjoint model or some other
means, we can include that information when emulating derivatives. This is similar to the variant thread on emulators
with derivative information (ThreadVariantWithDerivatives) which includes derivative information when emulating
function output. If the adjoint to a simulator doesn’t exist and we don’t wish to obtain derivative information through
another method, it is still possible to emulate model derivatives with just the function output.

13.11.2 The emulator

The derivatives of a posterior Gaussian process remain Gaussian processes with mean and covariance functions ob-
tained by the relevant derivatives of the posterior mean and covariance functions. This can be applied to any Gaussian
process emulator. The process of building an emulator of derivatives with the fully Bayesian approach is given in
the procedure page ProcBuildEmulateDerivsGP. This covers building a Gaussian process emulator of derivatives with
just function output, an extension of the core thread 7hreadCoreGP, and a Gaussian process emulator of derivatives
built with function output and derivative information, an extension of ThreadVariantWithDerivatives.

The result is a Gaussian process emulator of derivatives which will correctly represent any derivatives in the training
data, but it is always important to validate the emulator against additional derivative information. For the core problem,
the process of validation is described in the procedure page ProcValidateCoreGP. Although here we are interested in
emulating derivatives, as we know the derivatives of a Gaussian process remain a Gaussian process, we can apply the
same validation techniques as for the core problem. We require a validation design D’ which consists of points where
we want to obtain validation derivatives. An adjoint is then run at these points; if an appropriate adjoint does not exist
the derivatives are obtained through another technique, for example finite differences. If any local sensitivity analysis
has already been performed on the simulator, some derivatives may already have been obtained and can be used here
for validation. Then in the case of a linear mean function, weak prior information on hyperparameters /3 and o, and
a single posterior estimate of §, the predictive mean vector, m*, and the predictive covariance matrix, V*, required in
ProcValidateCoreGP, are given by the functions m*(-) and 9*(-,-) which are given in ProcBuildEmulateDerivsGP.
We can therefore validate an emulator of derivatives using the same procedure as that which we apply to validate an
emulator of the core problem. It is often necessary, in response to the validation diagnostics, to rebuild the emulator
using additional training runs which can of course, include derivatives. We hope to extend the validation process using
derivatives as we gain more experience in validation diagnostics and emulating with derivative information.

The Bayes linear approach to emulating derivatives may be covered in a future release of the toolkit.

13.11. Thread: Generic methods to emulate derivatives 71

Multi-Output GP Emulator Documentation, Release 0.6.0

13.11.3 Tasks

Having obtained a working emulator, the MUCM methodology now enables efficient analysis of a number of tasks
that regularly face users of simulators.

Prediction

The simplest of these tasks is to use the emulator as a fast surrogate for the adjoint, i.e. to predict what derivatives the
adjoint would produce if run at a new point in the input space. The process of predicting function output at one or more
new points for the core problem is set out in the prediction page ProcPredictGP. Here we are predicting derivatives
and the process of prediction is the same as for the core problem. If the procedure in ProcBuildEmulateDerivsGP is
followed, D, 7, A, € etc. are used in replace of D, t, A, e, as required in ProcPredictGP.

Sensitivity analysis

In sensitivity analysis the objective is to understand how the output responds to changes in individual inputs or groups
of inputs. Local sensitivity analysis uses derivatives to study the effect on the output, when the inputs are perturbed by
a small amount. Emulated derivatives could replace adjoint produced derivatives in this analysis if the adjoint is too
expensive to execute or in fact does not exist.

Other tasks

Derivatives can be informative in optimization problems. If we want to find which sets of input values results in either
a maximum or a minimum output then knowledge of the gradient of the function, with respect to the inputs, may result
in a more efficient search. Derivative information is also useful in data assimilation.

13.12 Thread: History Matching

13.12.1 Overview

The principal user entry points to the MUCM toolkit are the various threads, as explained in MetaToolkitStructure.
This thread takes the user through a technique known as history matching, which is used to learn about the inputs x
to a model f(z) using observations of the real system z. As the history matching process typically involves the use of
expectations and variances of emulators, we assume that the user has successfully emulated the model using the Bayes
Linear strategy as detailed in ThreadCoreBL. An associated technique corresponding to a fully probabilistic emulator,
as described in ThreadCoreGP, will be discussed in a future release. Here we use the term model synonymously with
the term simulator.

The description of the link between the model and the real system is vital in the history matching process, therefore
several of the concepts discussed in ThreadVariantModelDiscrepancy will be used here.

As we are not concerned with the details of emulation we will describe a substantially more general case than covered
by the core model. Assumptions we share with the core model are:

¢ We are only concerned with one simulator.
* The simulator is deterministic.
However, in contrast to the Core model we now assume:
* We have observations of the real world process against which to compare the simulator.

* We wish to make statements about the real world process.

72 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

* The simulator can produce one, or more than one, output of interest.

The first two of these new assumptions are fundamental to this thread as we will be comparing model outputs with real
world measurements. We then use this information to inform us about the model inputs z. The third point states that
we will be dealing with both univariate and multivariate cases. In this release we discuss the Bayes Linear case, where
our beliefs about the simulator are represented as a second-order specification. Other assumptions such as whether
simulator derivative information is available (which could have been used in the emulation construction process), do
not concern us here.

13.12.2 Notation

In accordance with standard roolkit notation, in this page we use the following definitions:
* z - vector of inputs to the model
* f(x) - vector of outputs of the model function
* y - vector of the actual system values
* z - vector of observations of reality y
ez - ‘best input’
* d - model discrepancy
* X - set of all acceptable inputs
* Xj - whole input space
* A& - reduced input space after j waves

* I(z) - implausibility measure

13.12.3 Motivation for History Matching

It is often the case that when dealing with a particular model of a physical process, observations of the real world
system are available. These observations z can be compared with outputs of the model f(z), and often a major
question of interest is: what can we learn about the inputs x using the observations z and knowledge of the model

().

History matching is a technique which seeks to identify regions of the input space that would give rise to acceptable
matches between model output and observed data, a set of inputs that we denote as X. Often large parts of the input
space give rise to model outputs that are very different from the observed data. The strategy, as is described below,
involves iteratively discarding such ‘implausible’ inputs from further analysis, using straightforward, intuitive criteria.

At each iteration this process involves: the construction of emulators (which we will not discuss in detail here);
the formulation of implausibility measures I(x); the imposing of cutoffs on the implausibility measures, and the
subsequent discarding of unwanted (or implausible) regions of input space.

Often in computer model experiments, the vast majority (or even all) of the input space would give rise to unacceptable
matches to the observed data, and it is these regions that the history matching process seeks to identify and discard.
Analysis of the often extremely small volume that remains can be of major interest to the modeller. This might involve
analysing in which parts of the space acceptable matches can be found, what are the dependencies between acceptable
inputs and what is the quality of matches that are possible. The goal here is just to rule out the obviously bad parts:
for a more detailed approach involving priors and posterior distributions for the best input 2T, the process known
as calibration has been developed. This will be described in a future release, including a comparison between the
calibration and history matching processes.

13.12. Thread: History Matching 73

Multi-Output GP Emulator Documentation, Release 0.6.0

13.12.4 Implausibility Measures

The history matching approach is centred around the concept of an implausibility measure which we now introduce,
for further discussion see AltImplausibilityMeasure. An implausibility measure I(z) is a function defined over the
whole input space which, when large, suggests that there would be a large disparity between the model output and the
observed data.

We do not know the model outputs f(x) corresponding to every point x in input space, as the model typically takes
too long to run. In order to construct such an implausibility measure, we first build an emulator (such as is described in
the core Bayes Linear thread) in order to obtain the expectation and variance of f(x). We then compare the expected
output E[f(z)] with the observations z. In the simplest case where f(z) represents a single output and z a single
observation, a possible form for the univariate implausibility measure is:

_ EBU@I-2® (Bl -2
Var[E[f(z)] — 2] Var[f(z)] + Var[d] + Var|e]

()

where E[f(z)] and Var[f(z)] are the emulator expectation and variance respectively, d is the model discrepancy,
discussed in ThreadVariantModelDiscrepancy and e is the observational error. The second equality follows from the
definition of the best input approach (see DiscBestInput for details).

The basic idea is that if I(x) is high for some x, then even given all the uncertainties present in the problem, we would
still expect the output of the model to be a poor match to the observed data z. We can hence discard = as a potential
member of the set X.

As is discussed in AltlmplausibilityMeasure, there are many possible choices of measure. If the function has many
outputs then one can define a univariate implausibility measure /(;) () for each of the outputs labelled by i. One can
then use the maximum implausibility () to discard input space. It is also possible to define a full multivariate
implausibility measure Iy (), provided one has available suitable multivariate versions of the model discrepancy d
(see for example DiscStructuredMD), the observational errors, and a multivariate emulator. (A multivariate emulator
is not essential if, for example, the user has an accurate multi-output emulator: see ThreadVariantMultipleOutputs).

Implausibility measure are simple and intuitive, and are easily constructed and used, as is described in the next section.

13.12.5 Imposing Implausibility Cutoffs

The history matching process seeks to identify the set of all inputs X that would give rise to acceptable matches
between outputs and observed data. Rather that focus on identifying such acceptable inputs, we instead discard inputs
that are highly unlikely to be members of X'.

This is achieved by imposing cutoffs on the implausibility measures. For example, if we were dealing with the
univariate implausibility measure defined above, we might impose the cutoff ¢ and discard from further analysis all
inputs that do not satisfy the constraint I (x) < ¢ This defines a new sub-volume of the input space that we refer to as
the non-implausible volume, and denote as &’;. The choice of value for the cutoff c is obviously important, and various
arguments can be employed to determine sensible values, as are discussed in DisclmplausibilityCutoff. A common
method is to use Pukelsheim’s (1994) three-sigma rule that states that for any unimodal, continuous distribution 0.95
of the probability will lie within a £3¢ interval. This suggests that taking a value of ¢ = 3 is a reasonable starting
point for a univariate measure.

Suitable cutoffs for each of the implausibility measures introduced in AltImplausibilityMeasure, such as Ips(x) and
Iy (), can be found through similar considerations. This often involves analysing the fraction of input space that
would be removed for various sizes of cutoff (see DisclmplausibilityCutoff). In many applications, large amounts of
input space can be removed using relatively conservative (i.e. large) choices of the cutoffs.

We apply such space reduction steps iteratively, as described in the next section.

74 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

13.12.6 lterative Approach to Input Space Reduction

As opposed to attempting to identify the set of acceptable inputs X" in one step, we instead employ an iterative approach
to input space reduction. At each iteration or wave, we design a set of runs only over the current non-implausible
volume, emulate using these runs, calculate the implausibility measures of interest and impose cutoffs to define a new
(smaller) non-implausible volume. This is referred to as refocusing.

The full iterative method can be summarised by the following algorithm. At each iteration or wave:
1. A design for a space filling set of runs over the current non-implausible volume X is created.

2. These runs (along with any non-implausible runs from previous waves) are used to construct a more accurate
emulator defined only over the current non-implausible volume &;.

3. The implausibility measures are then recalculated over X;, using the new emulator,

4. Cutoffs are imposed on the implausibility measures and this defines a new, smaller, non-implausible volume
Xj+1 which should satisfy X C &1 C &].

5. Unless the stopping criteria described below have been reached, or the computational resources exhausted,
return to step 1.

At each wave the emulators become more accurate, and this allows further reduction of the input space. Assuming
sufficient computational resources, the stopping criteria are achieved when, after a (usually small) number of waves,
the emulator variance becomes far smaller than the other uncertainties present, namely the model discrepancy and
observational errors. At this point the algorithm is terminated. The current non-implausible volume &; should be a
reasonable approximation to the acceptable set of inputs X'. For further details and discussion of why this method
works, and for full descriptions of the stopping criteria, see DisclterativeRefocussing.

13.12.7 A 1D Example

For a simple, illustrative example of the iterative approach to history matching, see ExamlDHistoryMatch where a
simple 1-dimensional model is matched to observed data using two waves of refocussing.

13.12.8 Additional Comments, References and Links.

While the goal of this approach is to identify the set of acceptable inputs &, it is possible that this set is empty. This
possibility would be identified by the history matching approach, and we would therefore suggest that history matching
is employed first, before other more detailed techniques are used. Once it is established that the set X' is non-empty,
and once the location, size and structure of X have been analysed (which are often of major interest to the modellers),
then more detailed techniques such as probabilistic calibration can be employed.

Note that if, at any wave we find that the set X, is empty, then we would declare that X is empty also, and therefore
that the simulator does not provide acceptable matches to the observed data. Conversely, we can establish that X is
non-empty by checking to see if any of the runs we have used, in any of the waves, would pass all the implausibility
cutoffs. If so these runs are, by definition, members of X'. If we have reached the stopping criteria after k iterations
and have not found any such runs, we can do a final batch of runs provided X}, is still non-empty.

The iterative refocussing strategy presented in this thread is a very powerful method and has been successfully used to
history match complex models across a variety of application areas. These include oil reservoir models (Craig et. al.
1996, 1997) and models of Galaxy formation (Vernon et. al. 2010, Bower et. al. 2009).

Pukelsheim, F. (1994). “The three sigma rule.” The American Statistician, 48: 88-91.

Craig, P. S., Goldstein, M., Seheult, A. H., and Smith, J. A. (1996). “Bayes linear strategies for history matching of
hydrocarbon reservoirs.” In Bernardo, J. M., Berger, J. O., Dawid, A. P., and Smith, A. F. M. (eds.), Bayesian Statistics
5, 69-95. Oxford, UK: Clarendon Press.

13.12. Thread: History Matching 75

Multi-Output GP Emulator Documentation, Release 0.6.0

Craig, P. S., Goldstein, M., Seheult, A. H., and Smith, J. A. (1997). “Pressure matching for hydrocarbon reservoirs: a
case study in the use of Bayes linear strategies for large computer experiments.” In Gatsonis, C., Hodges, J. S., Kass,
R. E., McCulloch?, R., Rossi, P., and Singpurwalla, N. D. (eds.), Case Studies in Bayesian Statistics, volume 3, 36-93.
New York: Springer-Verlag.

Vernon, 1., Goldstein, M., and Bower, R. (2010), “Galaxy Formation: a Bayesian Uncertainty Analysis,” MUCM
Technical Report 10/03

Bower, R., Vernon, 1., Goldstein, M., et al. (2009), “The Parameter Space of Galaxy Formation,” to appear in MNRAS;
MUCM Technical Report 10/02

13.13 Thread: Generic methods for combining two or more emulators

13.13.1 Overview

In this thread we consider the situation in which two or more independent emulators have been built. Each emulates a
single output of a simulator, and we assume that they all have the same set of inputs. This situation will usually arise
when the emulators are emulating different outputs from the same simulator - see the alternatives page on approaches
to emulating multiple outputs (AltMultipleOutputsApproach). It may also arise when they are emulating outputs
from different simulators, and here the requirement for all the emulators to have the same set of inputs may be met
by assembling all the inputs for the different simulators into a single combined set (so that an individual emulator
formally has this pooled set as its inputs although it only depends on a subset of them).

The emulators have been built separately and are supposed to be independent. Our objective in this thread is to combine
the emulators to address tasks which do not relate to a single output. Here are some examples.

* A simulator of an engine outputs the fuel consumption in each minute during a loading test. In order to esti-
mate consumption at different time points we have considered the alternative emulation approaches discussed
in AltMultipleOutputsApproach and decided to build separate, independent emulators. However, we are also
interested in the cumulative consumption at the end of the first hour, which is the sum of the separate minute-
by-minute consumption outputs.

* A simulator outputs the average electricity demand per capita in a city on a given day. Its inputs include weather
conditions and demographic data about the city. Separate emulators are built for a number of different cities, in
which the demographic data for each city are fixed and the emulator takes just the weather variables as inputs.
(It is common to use emulation in this way, to emulate the simulator output for a specific application in which
the simulator inputs specific to that application are fixed.) We now wish to estimate total electricity demand over
these cities on that day, which is the sum of the various per capita demands weighted by the city populations.
Note that although we may be able to assume that the temperature is the same in all the cities on that day, the
rainfall and cloud cover may vary between cities, so we would need to use the device of pooling inputs.

This thread therefore deals with how to combine two or more independent emulators to address such questions.

13.13.2 The emulators

We consider emulators built using any of the methods described in other threads, for instance the core threads Thread-
CoreGP and ThreadCoreBL. Therefore they may be fully Bayesian Gaussian process (GP) emulators or Bayes linear
(BL) emulators. The two forms of emulator are different, so this thread addresses separate issues for combining GP or
BL emulators where appropriate.

* A GP emulator is in the form of an updated GP (or a related process called a 7-process) conditional on hyperpa-
rameters, plus one or more sets of representative values of those hyperparameters.

* A BL emulator consists of a set of updated means, variances and covariances for the simulator output.

76 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

We suppose therefore that we are interested in one or more functions of the simulator outputs. These functions may
be linear, as in the above examples, or nonlinear.

We also suppose that the emulators have been validated as described in the relevant thread.

13.13.3 Tasks

Having obtained a working emulator, the MUCM methodology now enables efficient analysis of a number of tasks
that regularly face users of simulators. In these tasks, the procedure may simply reduce to combining the results of
performing the corresponding task on each emulator separately; however, some tasks require additional computations.

Prediction

The simplest task for an emulator is as a fast surrogate for the simulator, i.e. to predict what output the simulator would
produce if run at a new point in the input space. Procedures for predicting one or more functions of independently
emulated outputs are set out in the procedure page ProcPredictMultipleEmulators.

Uncertainty analysis

Uncertainty analysis is the process of predicting the simulator output when one or more of the inputs are uncertain.
The procedure page ProcUAMultipleEmulators explains how this is done for functions of independently emulated
outputs.

13.13.4 Additional Comments, References, and Links

Other tasks that can be addressed include sensitivity analysis (studying how outputs are influenced by individual
inputs), optimisation (finding the values of one or more inputs that will minimise or maximise the output) and decision
analysis (finding an optimal decision according to a formal description of utilities). We expect to add procedures for
these tasks for multiple emulators in due course.

13.14 Thread: Experimental design

This thread presents different ways of an selecting experimental design, namely a set of input combinations at which
to make computer runs, to construct an emulator. We may use the term “design space” to mean the region of input
space from which the combinations may be selected and the term “design point” for an actual combination. Designs
separate into two basic classes: general purpose designs, which may be used for a range of different simulators, and
designs which are chosen to be optimal (in some sense) for a particular simulator.

For computer experiments to build an emulator the most used general purpose designs are space filling designs. model
based designs which are based on the principles of optimal design but tailor-made for computer experiments.

Solving optimality problems requires optimisers, that is optimisation algorithms. Exchange algorithms (ProcEx-
changeAlgorithm) are favoured in which, naively, “bad” design points are exchanged for “good”. They are cheap
to implement and very fast. They are similar in style to global optimisation algorithms, particularly those versions
which include a random search element.

A special technique to approximate the process and its covariance function, which provides a useful simplification, is
the Karhunen-Loeve expansion: DiscKarhunenLoeveExpansion and this can be adapted to experimental design.

An ideal is to be able to conduct sequential experiments in which one can adapt present computer runs to data and
analysis conducted previously. Some methods are being developed in ProcASCM.

13.14. Thread: Experimental design 77

Multi-Output GP Emulator Documentation, Release 0.6.0

13.14.1 Overview

In any scientific study experimental design should play an important part. The terminology changes, somewhat,
between areas and even within statistics itself. Similar terms are: planning of experiments, design of a training set,
supervised learning, selective sampling, spatial sampling and so on. Historically, “experiment” has always been a key
part of the scientific method. Francis Bacon (1620, Novum Organum):

. the real order of experience begins by setting up a light, and then shows the road by it, commencing
with a regulated and digested, not a misplaced and vague course of experiment, and hence deducing
axioms, and from those axioms new experiments. . .

The subject came of age with the introduction of properly planned agricultural field trials in the 1920s by R A Fisher.
It then developed into combinatorial design methods (Latin Squares etc), factorial design, response surface design,
optimal design both classical and Bayesian.

In this thread we focus on methods of computer experimental design for the purpose of building an emulator.

13.14.2 Developing a protocol for a computer experiments study

A scientific study requires an experimental protocol, even if the initial protocol is adapted to circumstances. Exper-
iments need to be planned. This is as much true of a computer experiment as of a physical experiment. We divide
this section into two subsections, the first covers some essential planning issues, the second gives a simple standard
scheme or protocol.

Planning

The following are some issues which are important when planning a computer experiment.

1. The objective of the experiment. There are many, e.g. (i) to understand the input-output relationship (ii) to
find the most important explanatory factors (iii) to find the inputs which place the output in some target region
or achieve a given level (the inverse problem) (iv) to find the input which maximises the output and what the
maximum value is.

2. A starting model. (i) What do we know already about the relationship between inputs and outputs? (ii) Can
we rank the inputs in perceived order of importance? Are there regions of input space for which the output has
highly variable output?

3. Input and output variables. A full description is essential: (i) units of measurement (ii) ranges (iii) discrete,
continuous, functional, etc (iv) our ability to set levels, measure, record, store etc. In summary: each variable
needs a full “CV”.

4. Input variables (factors) (i) nominal (central) values, (ii) range, (ii) method of setting levels: by hand, automated,
input files etc.

5. Experimental costs/resources. (i) run time (physical or computer experiments) (ii) budget etc. A good measure
of cost is how many hours, to set up, run the computer, etc to obtain results of a unit of experimental activity.

A simple four-stage protocol

It is unwise to launch a study with one large experiment. The following is a basic protocol. Each stage will need an
experimental design and one should only proceed to the next stage after analysing the results of the previous stage.
Analysis is only discussed in this thread to the extent needed for design, but it is helpful to provide diagrammatic
representations of results e.g. (i) tables of which input affects which output (ii) basic effect plots.

78 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

1. Nominal experiment. Set all inputs to their nominal values and generate the output(s). This provides a useful
check on (i) the performability of a basic run (ii) a central input-to-output combination (iii) data on set-up
time, run time, etc. By experimenting at the “centre” of the input space a useful bench-mark for future runs is
provided.

2. Initial screening experiment. One may use a formal screening design. The purpose is to identify input factors
which significantly affect one or more outputs, with a view to not including (or keeping at their nominal values)
the non-significant factors. Even keeping all input factors at nominal and moving just one factor of interest is
useful, although inefficient as part of a larger experiment.

3. Main experiment. This involves the design and conduct of a larger scale experiment making use of (i) per-
ceived significant inputs (ii) prior knowledge of possible models. It is here that a more sophisticated design for
computer experiments may be used.

4. Confirmatory experiment (validation experiment). At a basic level it is useful to have additional training runs as
an overall check on the accuracy/validity of the emulator. If the experiments are a success they will confirm or
disconfirm prior beliefs about relationships, discover new ones, achieve some optimum etc. It is often important
to carry out a more focused confirmatory follow-up experiment. For example, if it is considered that a set of
input values puts the output in a target region, then confirmatory runs can try to confirm this.

13.14.3 Main experiment design for an emulator

We now consider in some depth the design of the “main experiment” as described above, with which to build an
emulator. The set of design points together with the output in this case is commonly referred to as the training sample.
General discussion on the design of a training sample is given in the page DiscCoreDesign, and we provide here some
more technical background. We will return briefly to consideration of screening and validation designs in the final
section of this thread.

The most widely used training sample designs are general purpose designs, particularly those that have a space-filling
property. Such designs attempt to place the design points in the design space so that they are well separated and cover
the design space evenly. The rationale for such designs rests on the fact that the simulator output is assumed to vary
smoothly as the inputs change, and so in the case of a deferministic simulator there is very little extra information to be
gained by placing two design points very close to each other. Having design points very close together can also lead
to numerical difficulties (as discussed in the page DiscBuildCoreGP). Conversely, leaving large “holes” in the design
space risks missing important local behaviour of the simulator.

General purpose designs have a long history in experimental design and DiscFactorialDesign gives a short introduc-
tion. One could consider a space-filling design as a very special type of factorial design, again tailored to computer
experiments. In the same way that classical factorial designs give a certain amount of robustness against different
possible simple polynomial models, so space-filling designs guard against, or prepare for the presence of, different
output features that may arise in different parts of the design space.

Such general-purpose designs have been widely and successfully used in computer experiments. But there are several
reasons to look at more sophisticated “tailor-made” designs. For instance, not having points close together makes it
more difficult to identify the form and parameters of a suitable covariance function (see the discussion of covariance
functions in the page AltCorrelationFunction and of estimating their parameters in A/tEstimateDelta). Also, sequential
design procedures may allow the main experiment to adapt to information in earlier stages when planning later stages.
(Although some non-random space-filling designs presented in the page AltCoreDesign may be used in a sequential
way, they are not adaptive.) As a result, there is growing interest in model-based optimal designs for training samples.

The Bayesian approach is very useful in underpinning the principals of optimal design because it gives well-defined
meaning to the increase in precision or information expected from an experiment. It is also natural because in MUCM,
we choose Bayesian models to build the emulator.

Model based optimal design is critically dependent on the criteria used. One way to think of optimal design is as a
special type of decision problem, and like all decision problems some notion of optimality is needed (in economics one

13.14. Thread: Experimental design 79

Multi-Output GP Emulator Documentation, Release 0.6.0

would have a utility function whose expectation is a risk function). There are well-known criteria which were first in-
troduced in (non-Bayesian) classical regression analysis but are now fully adapted to the Bayesian setting. An example
of a Bayesian principal working is in understanding the expected again in information from an experiment. All these
matters are discussed in AlfOptimalCriteria. Further discussion of basic optimal design for computer experiments can
also be found in AlrCoreDesign.

In the same way that model-based optimal experimental design grew out of a more decision-theoretical approach
to factorial design in regression, so optimal design for computer experiments is a second or even third generation
approach to experimental design. The methodology behind optimal design for computer experiments remains, here,
Bayes optimal design, but two issues (at least) distinguish the emphasis of optimal design for computer experiments
from that for Bayes optimal design in regression. The first is that the criteria are most often based on prediction
because the overall quality of the emulator fit is important. Second, the covariance parameters appear in the Gaussian
Process model in a non-linear way (see AltCorrelationFunction), making optimal design for covariance estimation
more intractable when the covariance parameters are unknown.

* Optimisation. Solving an optimality problem requires and optimisation algorithm. Exchange algorithms (see
the procedure page ProcExchangeAlgorithm) iterativley swap one or more points in the design for the same
number of points in the candidate set, but outside the design, with the aim of exchanging “bad” points for
“better” points. The algorithms are simple to implement and fast, but not guaranteed to converge to the globally
best solution. More sophisticated algorithms such as branch and bound which give a global optimum (see
ProcBranchAndBoundAlgorithm) are available but slower and harder to implement.

* The Karhunen-Loeve expansion. A promising way to handle the nonlinearity of the covariance function in its
parameters is to use the Karhunen-Loeve expansion. This approach is described in more detail below.

» Sequential design. We have already mentioned the potential value of sequential design and this is also discussed
below.

Karhunen Loeve (K-L) method

This is a method for representing a Gaussian Process and its covariance function as arising from a random regression
with an infinite number of regression functions; see DiscKarhunenLoeveExpansion. These function are “orthogonal”
in a well-defined sense. By truncating the series, and equivalently its covariance function, we obtain an approximation
to the process but one which makes it an ordinary random regression and therefore amenable to standard Bayes optimal
design methods; see AltOptimalCriteria. To use the K-L method one needs to compute the expansion numerically
because there are very few cases in which there is a closed form solution. The K-L method is one way of avoiding the
problems associated with optimal design for covariance parameters which arise because of the non-linearity. Another
benefit is that one can see how the smoothness of the process is split between different terms; typically slowly varying
terms lead to design points which are more extreme or concentrate on few areas whereas high frequency terms tend to
require designs points which are spread inside the design space.

Sequential experiments

Sequential methods in experimental design can be simple; the above four-stage protocol can be considered as a type
of sequential experiment. Full sequential procedures use the data and the analysis from previous experiments to select
further experiments. They can be one design point at a time or block sequential. The Bayes paradigm is very useful
in understanding sequential experimental design and in AltOptimalCriteria there is a discussion. The basic strategy is
to update parameter estimates, of both the “regression” and covariance parameters, and base the next design point or
block of design points on the updated assessment of the underlying Gaussian process. As mentioned, criteria which
depend on prediction quality are favoured.

It is useful to think of sequential design as being partly adaptive in the case where outputs play little or no role in
the choice of the next block of designs points and fully adaptive, where both inputs and outputs are used. The partly
adaptive material appears in ProcASCM. Fully adaptive methods will appear in later releases of the toolkit, using the
partly adaptive methods as a foundation.

80 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

13.14.4 Design for other toolkit areas

Screening design

Screening was discussed earlier in the context of the second stage of the four-stage protocol. Screening methods, with
the resulting specialised designs, are considered in the topic thread ThreadTopicScreening.

Validation design

Validation was discussed in the context of the fourth stage of the four-stage protocol. Suitable criteria and designs for
validation are an active topic of research and we expect to provide more discussion in a later release of the toolkit.
Some interim ideas are presented in DiscCoreValidationDesign.

Simulation design

Thi kind of design that arise in the toolkit is in the context of simulation techniques for computing predictions and
other more complex tasks from emulators. As discussed in ProcSimulationBasedInference, the general simulation
method involves drawing simulated realisations of the simulator itself, and the associated design issue is discussed in
DiscRealisationDesign. This is another area where more research is needed and we hope to report progress in later
releases of the toolkit.

Design for combined physical and computer experiments

An outstanding problem is to design experiments which are a mixture of computer experiments (simulation runs) and
physical experiments. Some of the issues come under the heading of calibration. A simple protocol is to do physical
experiments to improve the predictions of constants, features or simply the model itself where these are predicted
by the emulator to be poor (high discrepancy) or where the uncertainty is large (high posterior variance). An ideal
Bayesian approach is to combine the emulator and real world model into a single modelling system, given a full
joint prior distribution. This model-based approach may eventually lead to more coherent optimal design than simple
protocols of the kind just mentioned. The importance of this area cannot be underestimated.

13.14.5 Additional Comments, References, and Links

The following books have some design material.

Thomas J. Santner, Brian J. Williams, William Notz. The design and analysis of computer experiments. Springer,
2003

K. Fang, R. Lui and A.Sudjianto. Design and modelling for computer experiments. Chapman and Hall/CRC, 2005.
A recent paper on computer/physical experiments is:

D. Romano (with A Giovagnoli) A sequential methodology for integrating physical and computer experiments. Pre-
sentation at the Newton Institute. http://www.newton.ac.uk/programmes/DOE/seminars/081515001.html

13.15 Thread: Screening

13.15.1 Overview

Screening involves identifying the relevant input factors that drive a simulator’s behaviour.

13.15. Thread: Screening 81

http://www.newton.ac.uk/programmes/DOE/seminars/081515001.html

Multi-Output GP Emulator Documentation, Release 0.6.0

Screening, also known as variable selection in the machine learning literature, is a research area with a long history.
Traditionally, screening has been applied to physical experiments where a number of observations of reality are taken.
One of the primary aims is to remove, or reduce, the requirement to measure inconsequential quantities (inputs)
thus decreasing the time and expense required for future experiments. More recently, screening methods have been
developed for computer experiments where a simulator is developed to model the behaviour of a physical, or other,
system. In this context, the quantities represent the input variables and the benefit of reducing the dimension of the
input space is on the emulator model complexity and training efficiency rather than on the cost of actually obtaining
the input values themselves.

With the increasing usage of ever more complex models in science and engineering, dimensionality reduction of
both input and output spaces of models has grown in importance. It is typical, for example in complex models, to
have several tens or hundreds of input (and potentially output) variables. In such high dimensional spaces, efficient
algorithms for dimensionality reduction are of paramount importance to allow effective probabilistic analysis. For
very high (say over 1000) sizes of input and/or output spaces open questions remain as to what can be achieved (see
for example the variant thread ThreadVariantMultipleOutputs for a discussion of the emulation of multiple outputs,
and procedure page ProcOutputsPrincipalComponents for a description of the use of principal component analysis
to reduce the dimension of the output space in particular). Even in simpler models, efficient application of screening
methods can reduce the computational cost and permit a focused investigation of the relevant factors for a given model.

Screening is a constrained version of dimensionality reduction where a subset of the original variables is retained.
In the general dimensionality reduction case, the variables may be transformed before being used in the emulator,
typically using a linear or non-linear mapping.

Both screening and Sensitivity Analysis (SA) may be utilised to identify variables with negligible total effects on the
output variables. They can provide results at various levels of granularity from a simple qualitative ranking of the im-
portance of the input variables through to more exact quantitative results. SA methods provide more accurate variable
selection results but require larger number of samples, and thus entail much higher computational cost. The class of
SA methods are examined separately, in the topic thread on sensitivity analysis (ThreadTopicSensitivityAnalysis).

The focus in this thread is on screening and thus largely qualitative types of methods which typically require lower
computational resources, making them applicable to more complex models. Screening methods can be seen as a
form of pre-processing and the simulator evaluations used in the screening activity can also be used to construct the
emulator.

The benefits of screening are many fold:

1. Emulators are simpler; the reduced input space typically results in simpler models with fewer (hyper)parameters
that are more efficient, both to estimate and use.

2. Experimental design is more efficient, in a sequential setting; the initial expense of applying screening is typi-
cally more than recouped since a lower dimensional input space can be filled with fewer design points.

3. Interpretability is improved; the input variables are not transformed in any way and thus the practitioner can
immediately infer that the quantities represented in the discarded variables need not be estimated or measured
in the future.

Screening can be employed as part of the emulator construction and in practice is often applied prior to many of the
other methods described in the MUCM toolkit.

In this thread we restrict our attention to single outputs, i.e. for multiple output simulators the outputs would need to
be treated independently, and then the active inputs for each output identified separately.

In the alternatives page on screening methods (AltScreeningChoice) we provide more details of the alternative ap-
proaches to screening that are possible and discuss under what scenarios each screening method may be appropriate.

After the screening task is completed, the identified inactive factors may be excluded from further analysis as detailed
in the discussion page on active and inactive inputs (DiscActivelnputs).

82 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

13.15.2 References

Saltelli, A., Chan, K. and Scott, E. M. (eds.) (2000). Sensitivity Analysis. Wiley.

13.16 Thread: Sensitivity analysis

13.16.1 Overview

This is a topic thread, on the topic of sensitivity analysis. Topic threads are designed to provide additional background
information on a topic, and to link to places where the topic is developed in the core, variant and generic threads (see
the discussion of different kinds of threads in the Toolkit structure page (MetaToolkitStructure)).

The various forms of sensitivity analysis (SA) are tools for studying the relationship between a simulator’s inputs and
outputs. They are widely used to undestand the behaviour of the simulator, to identify which inputs have the strongest
influence on outputs and to put a value on learning more about uncertain inputs. It can be a prelude to simplifying the
simulator, or to constructing a simplified emulator, in which the number of inputs is reduced.

Procedures for carrying out SA using emulators are given in most of the core, variant and generic threads in the
toolkit. This topic thread places those specific tools and procedures in the wider context of SA methods and discusses
the practical uses of such methods.

13.16.2 Uses of SA

As indicated above, there are several uses for SA. We identify four uses which are outlined here and discussed further
when we present particular SA methods.

* Understanding. Techniques to show how the output f(x) behaves as we vary one or more of the inputs z are an
aid to understanding f. They can act as a ‘face validity’ check, in the sense that if the simulator is responding in
unexpected ways to changes in its inputs, or if some inputs appear to have unexpectedly strong influences, then
perhaps there are errors in the mathematical model or in its software implementation.

* Dimension reduction. If SA can show that certain inputs have negligible effect on the output, then this offers the
prospect of simplifying f by fixing those inputs. Whilst this does not usually simplify the simulator in the sense
of making it quicker or easier to evaluate f(x) at any desired x, it reduces the dimensionality of the input space.
This makes it easier to understand and use.

* Analysing output uncertainty. Where there is uncertainty about inputs, there is uncertainty about the resulting
outputs f(z); quantifying the output uncertainty is the role of uncertainty analysis, but there is often interest
in knowing how much of the overall output uncertainty can be attributed to uncertainty in particular inputs
or groups of inputs. In particular, effort to reduce output uncertainty can be expended most efficiently if it is
focused on those inputs that are influencing the output most strongly.

* Analysing decision uncertainty. More generally, uncertainty about simulator outputs is most relevant when those
outputs are to be used in the making of some decision (such as using a climate simulator in setting targets for
the reduction of carbon dioxide emissions). Again it is often useful to quantify how much of the overall decision
uncertainty is due to uncertainty in particular inputs. The prioritising of research effort to reduce uncertainty
depends on the influence of inputs, their current uncertainty and the nature of the decision.

13.16.3 Probabilistic SA

Although a variety of approaches to SA have been discussed and used by people who study and use simulators, there
is a strong preference in MUCM for a methodology known as probabilistic SA. Other approaches and the reasons for
preferring probabilistic SA are discussed in page DiscWhyProbabilisticSA.

13.16. Thread: Sensitivity analysis 83

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471998923

Multi-Output GP Emulator Documentation, Release 0.6.0

Probabilistic SA requires a probability distribution to be assigned to the simulator inputs. We first present some
notation and will then discuss the interpretation of the probability distribution and the relevant measures of sensitivity
in probabilistic SA.

Notation

In accordance with the standard roolkit notation, we denote the simulator by f and its inputs by =. The focus of SA is
the relationship between x and the simulator output(s) f(x). Since SA also typically tries to isolate the influences of
individual inputs, or groups of inputs, on the output(s), we let x; be the j-th element of = and will refer to this as the
j-th input, for j = 1,2,..., p, where as usual p is the number of inputs. If J is a subset of the indices {1, 2,...,p},
then 2 ; will denote the corresponding subset of inputs. For instance, if J = {2, 6} then z; = x5 6} comprises inputs
2 and 6. Finally, x_; will denote the whole of the inputs x except x;, and similarly x_ ; will be the set of all inputs
except those in z 5.

We denote the probability distribution over the inputs = by w. Formally, w(z) is the joint probability density function
for all the inputs. The marginal density function for input z; is denoted by w;(z;), while for the group of inputs z
the density function is w;(x). The conditional distribution for x_; given xy is w_; ;(z_s | zs). Note, however,
that it is common for the distribution w to be such that the various inputs are statistically independent. In this case the
conditional distribution w_ 7y does not depend on z; and is identical to the marginal distribution w_ ;.

Random X

Note that by assigning probability distributions to the inputs in probabilistic SA we formally treat those inputs as
random variables. Notationally, it is conventional in statistics to denote random variables by capital letters, and this
distinction is useful also in probabilistic SA. Thus, the symbol X denotes the set of inputs when regarded as random
(i.e. uncertain), while x continues to denote a particular set of input values. Similarly, X ; represents those random
inputs with subscripts in the set .J, while = ; denotes an actual value for those inputs.

It is most natural to think of X as a random variable in the context of the third and fourth uses of SA, as listed above.
When there is genuine uncertainty about the proper values to assign to inputs in order to obtain the output(s) of interest,
then X can indeed be interpreted as random, and w(zx) is then the probability density function describing the relative
probabilities of different possible values x for X. SA then involves trying to understand the role of uncertainty about
the various inputs in the induced uncertainty concerning the outputs f(X) or concerning a decision based on these
outputs.

Interpretation of w(x) as a weight function

However, in the context of other uses of SA it may be less natural to think of X as random. When our objective is to
gain understanding of the simulator’s behaviour or to identify inputs that are more or less redundant, it is not necessary
to regard the inputs as uncertain. It is, nevertheless, important to think about the range of input values over which we
wish to achieve the desired understanding or dimension reduction. In this case, w(x) can simply define that range by
being zero for any x outside the range. Within the range of interest, we may regard w(z) as a weight function. Whilst
we might normally give equal weight to all points in the range, for some purposes it may be appropriate to give more
weight to some points than to others.

Whether we regard w(x) as defining a probability distribution or simply as a weight function, it allows us to average
over the region of interest to define measures of sensitivity.

Probabilistic SA methods

We have seen that different uses of SA may suggest not only different ways of interpreting the w(z) function but also
may demand different kinds of SA measures. However, there are similarities and connections between the various

84 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

measures, particularly between measures used for understanding, dimension reduction and analysing output uncer-
tainty. These are discussed together in page DiscVarianceBasedSA (with some technical details in page DiscVari-
anceBasedSATheory). Ways to use these variance based SA measures for output uncertainty are considered in page
DiscSensitivityAndOutputUncertainty. Their usage for understanding and dimension reduction is discussed in page
DiscSensitivityAndSimplification.

Measures specific to analysing decision uncertainty are presented in the discussion page DiscDecisionBasedSA, where
the variance based measures are also shown to arise as a special case, while the discussion page DiscSensitivityAnd-
Decision considers the practical use of these measures for decision uncertainty.

13.16.4 SA in the toolkit

All SA measures concern the relationship between a simulator’s inputs and outputs. They generally depend on the
whole function f and implicitly suppose that we know f(z) for all . In practice, we can only run the simulator
at a limited number of input configurations, and as a result any computation of SA measures must be subject to
computation error. The conventional Monte Carlo approach, for instance, involves randomly sampling input values
and then running the simulator at each sampled x. Its accuracy can be quantified statistically and reduces as the
sample size increases. For large and complex simulators, Monte Carlo may be infeasible because of the amount of
computation required. One of the motivations for the MUCM approach is that tasks such as SA can be performed
much more efficiently, first building an emulator using a modest number of simulator runs, and then computing the
SA measures using the emulator. The computation error is then quantified in terms of code uncertainty.

SA is one of the tasks that we aim to cover in each of the main threads (i.e. core threads, variant threads and generic
threads). Each of these threads describes the modelling and building of an emulator for a particular kind of simulator,
and each explains how to use that emulator to carry out tasks associated with that simulator. So wherever the procedure
for computing SA measures has been worked out for a particular thread, that procedure will be described in that thread.
See the page DiscToolkitSensitivityAnalysis for a discussion of which procedures are available in which threads.

13.16.5 Additional comments

Note that although SA is usually presented as being concerned with the relationship between simulator inputs and
outputs, the principal purpose of a simulator is to represent a particular real-world phenomenon: it is often built to
explore how that real phenomenon behaves and some or all of its inputs represent quantities in the real world. The
simulator output f(x) is intended to predict the value of some aspect of the real phenomenon when the corresponding
real quantities take values x. So in principle we may wish to consider SA in which the simulator is replaced by reality.
This may be developed in a later version of this toolkit.

In some application areas, the term “probabilistic sensitivity analysis” is used for what we call uncertainty analysis.

13.16.6 References

Three books are extremely useful guides to the uses of SA in practice, and for non-MUCM methods for computing
some of the most important measures.

Saltelli, A., Chan, K. and Scott, E. M. (eds.) (2000). Sensitivity Analysis. Wiley.

Saltelli, A., Tarantola, S., Campolongo, F. and Ratto, M. (2004). Sensitivity Analysis in Practice: A guide to assessing
scientific models. Wiley.

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M. and Tarantola, S. (2008).
Global Sensitivity Analysis: The primer. Wiley.

MUCM methods for computing SA measures are based on using emulators. The basic theory was presented in

13.16. Thread: Sensitivity analysis 85

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471998923
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470870931
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470870931
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470059974.html

Multi-Output GP Emulator Documentation, Release 0.6.0

Oakley, J. E. and O’Hagan, A. (2004). Probabilistic sensitivity analysis of complex models: a Bayesian approach.
Journal of the Royal Statistical Society Series B 66, 751-769. (Online)

Whilst the above references are all useful for background information, the toolkit pages present a methodology for
efficient SA using emulators that is not published elsewhere in such a comprehensive way.

13.17 Thread: Dynamic Emulation

13.17.1 Overview

This thread describes how to construct an emulator for a dynamic simulator. Here, we describe an approach based on
emulating what we call the single step function. An alternative, though potentially less practical approach is to build a
multiple output emulator using the techniques described in the variant thread for analysing a simulator with multiple
inputs (ThreadVariantMultipleOutputs). For a comparison of the two methods see the alternatives page on dynamic
emulation approaches (AltDynamicEmulationApproach).

Readers should be familiar with the analysis of the core model, as described in the relevant core thread (Thread-
CoreGP), before continuing here. The task of building the emulator of the single step function is an example of the
core problem (though the multivariate extension described in ThreadVariantMultiple Outputs will be necessary in most
cases). This thread does not currently describe the analysis for dynamic simulators within the Bayes linear framework,
but methods will be added to these pages as they are developed.

13.17.2 Simulator specifications and notation
We make the distinction between the full simulator and the simulator single step function. The full simulator is the
simulator that we wish to analyse, and has the following inputs and outputs.
Full simulator inputs:
e Initial conditions wy.
¢ A time series of external forcing inputs aq, ..., ar.
» Constant parameters ¢.
Full simulator outputs:
¢ A time series w1y, ..., wr.

We refer to w; as the state variable at time t. Each of wy, a, and ¢ may be scalar or vector-valued. The value of
T may be fixed, or varied by the simulator user. We represent the full simulator by the function (w1, ...,wr) =
fruu(wo,a1,...,ar,). We define Xy, to be the input region of interest for the full simulator, with a point in X,
represented by (wo, a1, ..., ar, ®).

The full simulator produces the output (wi,...,wr) by iteratively applying a function of the form w, =
f(we—1,as, @), with f(.) known as the single step function. Inputs and outputs for the single step functions are
therefore as follows.

Single step function inputs:
¢ The current value of the state variable w;_1 .
* The associated forcing input a;.
* Constant parameters ¢.

Single step function output:

 The value of the state variable at the next time point wy.

86 Chapter 13. Uncertainty Quantification Methods

http://www3.interscience.wiley.com/journal/118808484/abstract

Multi-Output GP Emulator Documentation, Release 0.6.0

In this thread, we require the user to be able to run the single step function at any input value. Our method for
emulating the full simulator is based on emulating the single step function. We define X;,, 4. to be the input region
of interest for the single step function, with a point in Xy;,, ;e represented by z = (w, a, ¢).

Training inputs for the single step emulator are represented by D = {z1, ..., x, }. Note that the assignment of indices
1,...,n to the training inputs is arbitrary, so that there is no relationship between x; and ;1.

13.17.3 Emulating the full simulator: outline of the method

1. Build the single step emulator: an emulator of the single step function.

2. Tterate the single step emulator to randomly sample wy, . . ., wr given a full simulator input (wg, a1, . .., ar, P).
Repeat for different choices of full simulator input within X;.

3. Inspect the distribution of sampled trajectories wy, . . ., wr obtained in step 2 to determine whether the training
data for the single step emulator are adequate. If necessary, obtain further runs of the single step function and
return to step 1.

13.17.4 Step 1: Build an emulator of the single step function w; = f(w;_1, a;, ¢)

This can be done following the procedures in ThreadCoreGP, (or ThreadVariantMultipleOutputs if the state variable
is a vector). Two issues to consider in particular are the choice of mean function, and the design for the training data.

1) Choice of single step emulator mean function

(See the alternatives page on emulator prior mean function (AltMeanFunction) for a general discussion of the choice
of mean function). The user should think carefully about the relationship between w; and (w;_1, at, ¢). The state
variable at time ¢ is likely to be highly correlated with the state variable at time ¢ — 1, and so the constant mean
function is unlikely to be suitable.

2) Choice of single step emulator design

Design points for the single step function can be chosen following the general principles in the alternatives page on
training sample design for the core problem (AltCoreDesign). However, there is one feature of the dynamic emulation
case that is important to note: we can get feedback from the emulator to tell us if we have specified the input region
of interest Xs;nq1c appropriately. If the emulator predicts that w; will move outside the original design space for
some value of ¢, then we will want to predict f(wy, ai+1,¢) for an input (wy, ai11, @) outside our chosen Xy, gie-
Alternatively, we may find that the state variables are predicted to lie in a much smaller region than first thought, so
that some training data points may be wasted. Hence it is best to choose design points sequentially; we choose a
first set based on our initial choice of Xs;p41¢, and then in steps 2 and 3 we identify whether further training runs are
necessary.

‘We have not yet established how many training runs are optimal at this stage (or the optimal proportion of total training
runs to be chosen at this stage), though this will depend on how well X;,,4;c is chosen initially. In the application in
Conti et al (2009), with three state variable and two forcing inputs, we found the choice of 30 initial training runs and
20 subsequent training runs to work well.

As we will need to iterate the single step emulator over many time steps, we emphasise the importance of validating
the emulator, using the procedure page on validating a Gaussian process emulator (ProcValidateCoreGP).

13.17.5 Step 2: Iterate the single step emulator over the full simulator input region
of interest

We now iterate the single step emulator to establish whether the initial choice of design points D is suitable . We do
so by choosing points from X't,;;, and iterating the single step emulator given the specified (wo, a1, ...,ar,¢). A
procedure for doing so is described in ProcExploreFullSimulatorDesignRegion.

13.17. Thread: Dynamic Emulation 87

Multi-Output GP Emulator Documentation, Release 0.6.0

13.17.6 Step 3: Inspect the samples from step 2 and choose additional training
runs

Following step 2, we have now have samples (wt(i_)l, agi), ¢(i)) fort=1,...,Tandi =1,..., N. These samples give

us a revised assessment of Xs;p,ge, as the simulation in step 2 has suggested that we wish to predict f(.) at each point

(wt(z_)l, agl), #). We now compare this collection of points with the original training design D to see if additional

training data are necessary. If further training data are obtained, we re-build the single step emulator and return to step
2.

We do not currently have a simple procedure for choosing additional training data, as the shape of Xy;y, 41 implied
by the sampled (wt(z_)l, agl), ¢(“) is likely to be quite complex. A first step is to compare the marginal distribution
of each state vector element in the sample with the corresponding elements in the training design D, as this may
reveal obvious inadequacies in the training data. It is also important to identify the time ¢t* when a sampled time

series (wii_)l, agi), qb(i)) fort =1,...,T first moves outside the design region. The single step emulator may validate
less well the further the input moves from the training data, so that samples (wiz_)17 aEZ), qb(i)) for t > t* may be less
‘reliable’.

13.17.7 Tasks

Having obtained a satisfactorily working emulator, the MUCM methodology now enables efficient analysis of a num-
ber of tasks that regularly face users of simulators.

Prediction

The simplest of these tasks is to use the emulator as a fast surrogate for the simulator, i.e. to predict what output the
simulator would produce if run at a new point in the input space. We have two methods for doing this: the exact simu-
lation method described in the procedure page ProcExactlterateSingleStep Emulator (used in step 2 in the construction
of the emulator) and an approximation described in the procedure page ProcApproximatelterateSingleStepEmulator
which can be faster to implement. (See the alternatives page AltlteratingSingleStep Emulators for a comparison of the
two).

Uncertainty analysis

Uncertainty analysis is the process of predicting the simulator output when one or more of the inputs are uncertain.
The procedure page on uncertainty analysis for dynamic emulators (ProcUADynamicEmulator) explains how this is
done.

13.17.8 Additional Comments, References, and Links

Methods for other tasks such as sensitivity analysis will be added to these pages as they are developed.
The methodology described here is based on

Conti, S., Gosling, J. P, Oakley, J. E. and O’Hagan, A. (2009). Gaussian process emulation of dynamic computer
codes. Biometrika 96, 663-676.

88 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

13.18 Thread Variant: Linking Models to Reality using Model Discrep-
ancy

13.18.1 Overview

The principal user entry points to the MUCM toolkit are the various threads, as explained in the Toolkit structure page
(MetaToolkitStructure). This thread takes the user through possible techniques used to link the model to reality. This is
a vital step in order to incorporate observed data and to make any kind of statement about reality itself. As the process
of linking model to reality is somewhat independent of the emulation strategy used, we will assume that the user has
successfully emulated the model using one of the strategies outlined in the main threads (see e.g. ThreadCoreGP or
ThreadCoreBL). If the model is fast enough, emulation may not even be required, but the process described below
should still be employed. Here we use the term model synonymously with the term simulator.

As we are not concerned with the details of emulation we will describe a substantially more general case than covered
by the core model. Assumptions we share with the core model are:

* We are only concerned with one simulator.
* The simulator is deterministic.
However, in contrast to the Core model we now assume:
* We have observations of the real world process against which to compare the simulator.
* We wish to make statements about the real world process.
* The simulator can produce one, or more than one output of interest.

The first two assumptions are the main justifications for this thread. The third point states that we will be dealing
with both univariate and multivariate cases. We will also discuss both the fully Bayesian case, where the simulator
is represented as a Gaussian process (ThreadCoreGP), and the Bayes Linear case (ThreadCoreBL), where our beliefs
about the simulator are represented as a second-order specification. Other assumptions such as whether simulator
derivative information is available (which might have been used in the emulation construction process), do not concern
us here.

13.18.2 Notation

In accordance with toolkit notation, in this page we use the following definitions:
* z - vector of inputs to the model
* f(x) - vector of outputs of the model function
* y - vector of the actual system values
* z - vector of observations of reality y
e zT - the ‘best input’

* d - the model discrepancy

13.18.3 Model Discrepancy

No matter how complex a particular model of a physical process is, there will always be a difference between the
outputs of the model and the real process that the model is designed to represent. If we are interested in making
statements about the real system using results from the model, we must incorporate this difference into our analysis.
Failure to do so could lead to grossly inaccurate predictions and inferences regarding the structure of the real system.
See the discussion page on model discrepancy (Disc WhyModelDiscrepancy) where these ideas are detailed further.

13.18. Thread Variant: Linking Models to Reality using Model Discrepancy 89

Multi-Output GP Emulator Documentation, Release 0.6.0

We assume that the simulator produces r outputs that we are interested in comparing to real observations. One of
the simplest and most popular methods to represent the difference between model and reality is that of the Best Input
Approach which defines the Model Discrepancy via:

y = f(z) +d,

where y, f(x), d are all random r-vectors representing the system values, the simulator outputs and the Model Dis-
crepancy respectively. o is the vector of ‘Best Inputs’, which represents the values that the input parameters take in
the real system. We consider d to be independent of ™ and uncorrelated with f and f* (in the Bayes Linear Case)
or independent of f (in the fully Bayesian Case), where f* = f(z™). Note that the r-vector d may still posses a
rich covariance structure, which will need to be assessed. Although the Best Input approach is often chosen for its
simplicity, there are certain subtleties in the definition of 2+ and in the independence assumptions. A full discussion
of this approach is given in the discussion page on the best input approach (DiscBestInput), and also see DiscWhy-
ModelDiscrepancy for further general discussion on the need for a Model Discrepancy term.

More careful methods have been developed that go beyond the simple assumptions of the Best Input Approach. One
such method, known as Reification, is described in the discussion page DiscReification with further theoretical details
given in DiscReificationTheory.

13.18.4 Observation Equation

Unfortunately, we are never able to measure the real system values represented by the vector y. Instead, we can
perform measurements z of y that involve some measurement error. A simple way to express the link between z and
vy is using the observation equation:

z=y+e

where we assume that the measurement error e is uncorrelated with y (in the fully Bayesian case). It maybe the case
that z does not correspond exactly to y; for example, z could correspond to either a subset or some linear combination
of the elements of the vector y. Methods for dealing with these cases where z = Hy + e, for some matrix H,
and cases where z is a more complex function of y are described in the discussion page on the observation equation
(DiscObservations).

13.18.5 Assessing the Model Discrepancy

In order to make statements about the real system y, we need to be able to assess the Model Discrepancy d. Assessing
or estimating d is a difficult problem: as is discussed in Disc WhyModelDiscrepancy d represents a statistical model of
a difference which is in reality very complex. Various strategies are available, the suitability of each depending on the
context of the problem.

The first is that of Expert assessment, where the modeller’s beliefs about the deficiencies of the model are converted
into statistical statements about d (see DiscExpertAssessMD). Such considerations are always important, but they are
of particular value when there is a relatively small amount of observational data to compare the model output to.

The second is the use of informal methods to obtain order of magnitude assessments of d (see DisclnformalAssessMD).
These would often involve the use of simple computer model experiments to assess the contributions to the model
discrepancy from particular sources (e.g. forcing function uncertainty).

The third is the use of more formal statistical techniques to assess d. These include Bayesian inference (for example,
using MCMC), Bayes Linear inference methods and Likelihood inference. Although more difficult to implement,
these methods have the benefit of rigour (see DiscFormalAssessMD for details). It is worth noting that a full Bayesian
inference would calibrate the model and assess d simultaneously.

920 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

13.18.6 Cases Where Discrepancy has Clearly Defined Structure.

Physical Structure

The structure of the discrepancy vector corresponds to the underlying structure of the output vector, and we often
choose to make aspects of this structure explicit in our notation. Often such structures are physical in nature, for
example various parts of the system could be naturally labeled by their space-time location u. Then we might define
the model discrepancy via:

y(u) = f(u,a") + d(u)
where u labels the space-time location of the system, model and model discrepancy. Note that there may still be

multiple outputs at each value of u.

Consideration of such structures is important as they suggest natural ways of parameterising the covariance matrix of
d(u), for example using a separable form, and they can also suggest building certain physical trends into E[d]. Further
discussion and examples of structured model discrepancies can be found in DiscStructuredMD.

Exchangeable Models

In some situations a simulator may require, in addition to the usual input parameters z, a specification of certain
system conditions. The most common example of a system condition is that of a forcing function (e.g. rainfall in a
flood model). Often there exists a set of different system conditions (e.g. a set of different possible realisations of
rainfall over a fixed time period) that are considered equivalent in some sense. It can then be appropriate to consider
the simulator, run at each of the choices of system condition, as a set of Exchangeable Computer Models. In this case
the structure of the model discrepancy has a particular form, and methodology has been developed to analyse this more
complex situation and the subsequent link to reality, as can be found in the discussion page on exchangeable models
(DiscExchangeableModels).

13.18.7 Additional Comments, References and Links.

This thread has described the importance of including model discrepancy, and discussed methods of assessing such a
term. In the next release, several procedures will be described for which model discrepancy plays a vital role. These
will include Calibration, History Matching and Prediction.

13.19 Thread: Analysis of a simulator with multiple outputs using
Gaussian Process methods

13.19.1 Overview

The multivariate emulator

The principal user entry points to the MUCM toolkit are the various threads, as explained in the Toolkit structure
page (MetaToolkitStructure). The main threads give detailed instructions for building and using emulators in various
contexts.

This thread takes the user through the analysis of a variant of the most basic kind of problem, using the fully Bayesian
approach based on a Gaussian process (GP) emulator. We characterise the basic multi-output model as follows:

* We are only concerned with one simulator.

* The output is deterministic.

13.19. Thread: Analysis of a simulator with multiple outputs using Gaussian Process methods 91

Multi-Output GP Emulator Documentation, Release 0.6.0

* We do not have observations of the real world process against which to compare the simulator.
* We do not wish to make statements about the real world process.
* We cannot directly observe derivatives of the simulator.

Each of these requirements is also a part of the core problem, and is discussed further in DiscCore. However, the core
problem further assumes that the simulator only produces one output, or that we are only interested in one output. We
relax that assumption here. The core thread ThreadCoreGP deals with the analysis of the core problem using a GP
emulator. This variant thread extends the core analysis to the case of a simulator with more than one output.

The fully Bayesian approach has a further restriction:
* We are prepared to represent the simulator as a Gaussian process.

There is discussion of this requirement in DiscGaussianAssumption.

Alternative approaches to emulation

There are various approaches to tackling the problems raised by having multiple outputs, which are discussed in the
alternatives page on emulating multiple outputs (AltMultiple OutputsApproach). Some approaches reduce or trans-
form the multi-output model so that it can be analysed by the methods in ThreadCoreGP. However, others employ a
multivariate GP emulator that is described in detail in the remainder of this thread.

13.19.2 The GP model

The first stage in building the emulator is to model the mean and covariance structures of the Gaussian process that is
to represent the simulator. As explained in the definition of a multivariate Gaussian process, a GP is characterised by
a mean function and a covariance function. We model these functions to represent prior beliefs that we have about the
simulator, i.e. beliefs about the simulator prior to incorporating information from the training sample.

Alternative choices of the emulator prior mean function are considered in AltMeanFunction, with specific discussion
on the multivariate case in AltMeanFunctionMultivariate. In general, the choice will lead to the mean function depend-
ing on a set of hyperparameters that we will denote by 8. We will generally write the mean function as m(-) where
the dependence on £ is implicit. Note that if we have r outputs, then m(-) is a vector of 1 x r elements comprising the
mean functions of the various outputs.

The most common approach is to define the mean function to have the linear form m(z) = h%(z)3, where h(-) is a
q %X 1 vector of regressor (or basis) functions whose specification is part of the choice to be made. Note that 5 is a
q X r matrix.

The covariance function for a multivariate GP specifies the r X r covariance matrix between the outputs of the simu-
lator at an input configuration z and the r outputs at input z’. A number of options of varying complexity are available
for the covariance function, which are discussed in AltMultivariateCovarianceStructures. The hyperparameters in a
general covariance function, including the hyperparameters in the correlation function and scale parameters in the
covariance function are denoted by w.

The techniques that follow in this thread will be expressed as far as possible in terms of the general forms of the mean
and covariance functions, depending on general hyperparameters 8 and w. However, in many cases, simpler formulae
and methods can be developed when the linear mean function and the separable covariance function with a Gaussian
form of correlation function are are chosen, and some techniques in this thread may only be available in the special
cases.

13.19.3 Prior distributions

The GP modelling stage will have described the mean and covariance structures in terms of some hyperparameters. A
fully Bayesian approach now requires that we express probability distributions for these that are again prior distribu-

92 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

tions. Alternative forms of prior distributions for GP hyperparameters are discussed in AltGPPriors, with some specific
suggestions for the covariance function hyperparameters w given in AltMultivariateCovarianceStructures. The result
is in general a joint (prior) distribution 7(3,w). Where required, we will denote the marginal distribution of w by
7w (+), and similarly for marginal distributions of other groups of hyperparameters. This alternatives for multivariate
GP priors for the input-output separable case are further discussed in AltMultivariateGPPriors.

13.19.4 Design

The next step is to create a design, which consists of a set of points in the input space at which the simulator is to be
run to create the training sample. Design options for the core problem are discussed in Al/tCoreDesign. Design for the
multiple output problem has not been explicitly studied, but we believe that designs for the core problem will be good
also for the multi-output problem, although it seems likely that a larger number of design points could be required.

The result of applying one of the design procedures described there is an ordered set of points D = {1, 22, ..., Zp}.
The simulator is then run at each of these input configurations, producing a n x r matrix of outputs. The i-th column
of this matrix is the output produced by the simulator from the run with inputs z;.

One suggestion that is commonly made for the choice of the sample size n is n = 10p, where p is the number of
inputs. (This may typically be enough to obtain an initial fit, but additional simulator runs are likely to be needed for
the purposes of validation, and then to address problems raised in the validation diagnostics as discussed below. In
general there are no sure rules of thumb for this choice and careful validation is critical in building an emulator.)

13.19.5 Fitting the emulator

Given the training sample and the GP prior model, the process of building the emulator is theoretically straightfor-
ward, and is set out in the procedure page for building a multivariate Gaussian process emulator for the core problem
(ProcBuildMultiOutputGP). If a separable covariance function is chosen, then there are various simplifications to the
procedure, set out in ProcBuildMultiOutputGPSep.

The result of ProcBuildMultiOutputGP is the emulator, fitted to the prior information and training data. It is in the
form of an updated multivariate GP (or, in the separable covariance case, a related process called a multivariate t-
process) conditional on hyperparameters, plus one or more sets of representative values of those hyperparameters.
Addressing the tasks below will then consist of computing solutions for each set of hyperparameter values (using the
multivariate GP or t-process) and then an appropriate form of averaging of the resulting solutions (see the procedure
page on predicting simulator outputs using a GP emulator (ProcPredictGP)).

Although the fitted emulator will correctly represent the information in the training data, it is always important to
validate it against additional simulator runs. The procedure of validating a Gaussian process emulator is described
in ProcValidateCoreGP. It is often necessary, in response to the validation diagnostics, to rebuild the emulator using
additional training runs.

Validating multi-output emulators is more challenging. The most simple approach is to validate on individual outputs
(ignoring any correlations between them implied by the covariance function) using the methods defined in Proc-
ValidateCoreGP. This is not the full answer, however there is relatively little experience of validating multivariate
emulators in the literature. We hope to develop this and include insights in future releases of the toolkit.

13.19.6 Tasks

Having obtained a working emulator, the MUCM methodology now enables efficient analysis of a number of tasks
that regularly face users of simulators.

13.19. Thread: Analysis of a simulator with multiple outputs using Gaussian Process methods 93

Multi-Output GP Emulator Documentation, Release 0.6.0

Prediction

The simplest of these tasks is to use the emulator as a fast surrogate for the simulator, i.e. to predict what output the
simulator would produce if run at a new point «’ in the input space. The process of predicting one or more new points
is set out in ProcPredictGP.

For some of the tasks considered below, we require to predict the output not at a set of discrete points, but in effect the
entire output function as the inputs vary over some range. This can be achieved also using simulation, as discussed in
the procedure page for simulating realisations of an emulator (ProcSimulationBasedInference).

Sometimes interest will be in a deterministic function of one or more of the outputs. If your only interest is in a
function of a set of outputs which is a pre-determined mapping, building a direct single output emulator is probably
the most efficient approach. In other situations, such as when you are interested in both the raw outputs and one or
more functions of the outputs, or when you are interested in function(s) that depend some auxiliary variables other
than just the raw outputs of the simulator, then it is better to build the multivariate emulator first, then use the procedure
for obtaining a sample from the predictive distribution of the function set out in ProcPredictMultiOutputFunction.

It is worth noting that the predictive distribution (i.e. emulator) of any linear transformation of the outputs is also a
multivariate GP, or t-process. In particular, the emulator of a single linear combination of outputs is a regular univariate
GP emulator, so all the core theory applies whenever we want to do anything with a single output or with a single linear
combination of outputs. It is important to realise that having built a multivariate emulator, these single linear output
functions are derived from it, not by fitting a univariate emulator separately (which will almost certainly produce
slightly different results).

Uncertainty analysis

Uncertainty analysis is the process of predicting the simulator output when one or more of the inputs are uncertain.

Sensitivity analysis

In sensitivity analysis the objective is to understand how the output responds to changes in individual inputs or groups
of inputs. The most common approach is a variance based sensitivity analysis.

13.19.7 Examples

ExamMultipleOutputs is an example demonstrating the multivariate emulator with a number of different covariance
functions. ExamMultipleOutputsPCA is a more complex example showing a reduced dimension multivariate emulator
applied to a chemometrics model using PCA to reduce the dimension of the output space.

13.19.8 Additional Comments, References, and Links

Other tasks that can be addressed include optimisation (finding the values of one or more inputs that will minimise or
maximise the output) and decision analysis (finding an optimal decision according to a formal description of utilities).
A related task is decision-based sensitivity analysis. We expect to add procedures for these tasks for the core problem
in due course.

Another task that is very often required is calibration. This requires us to think about the relationship between the
simulator and reality, which is dealt with in ThreadVariantModelDiscrepancy. Although the calibration task itself is
not covered in this release of the Toolkit we hope to include it in a future release.

94 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

13.20 Thread Variant: Two-level emulation of the core model using a
fast approximation

13.20.1 Overview

Often, a computer model can be evaluated at different levels of accuracy resulting in different versions of the computer
model of the same system. For example, this can arise from simplifying the underlying mathematics, by adjusting
the model gridding, or by changing the accuracy of the model’s numerical solver. Lower accuracy models can often
be evaluated for a fraction of the cost of the full computer model, and may share many qualitative features with
the original. Often, the coarsened computer model is informative for the accurate computer model, and hence for the
physical system itself. By using evaluations of the coarse model in addition to those of the full model, we can construct
a single multiscale emulator of the computer simulation.

When an approximate version of the simulator is available, we refer to it as the coarse simulator, f¢(-), and the original
as the accurate simulator, f°(-), to reflect these differences in precision. We consider evaluations of the coarse model
to be relatively inexpensive when compared to f*(z). In such a setting, we can obtain many evaluations of the coarse
simulator and use these to construct an informed emulator for the coarse model. This provides a basis for constructing
an informed prior specification for the accurate emulator. We then select and evaluate a small number of accurate
model runs to update our emulator for the accurate model. This transfer of beliefs from coarse to accurate emulator is
the basis of multilevel emulation and is the focus of this thread.

This thread considers the problem of constructing an emulator for a single-output deterministic computer model f%(x)
when we have access to a single approximate version of the same simulator, f¢(z).

13.20.2 Requirements
The requirements for the methods and techniques described in this page differ from the core problem by relaxing the
requirement that we are only concerned with a single simulator. We now generalise this problem to the case where

* We have two computer models for the same complex system - one of the models (the coarse simulator) is
comparatively less expensive to evaluate, though consequently less accurate, than the second simulator (the
accurate simulator)

13.20.3 General process

The general process of two-level emulation follows three distinct stages:

1. Emulate the coarse model - design for and perform evaluations of f¢(x), use these evaluations to construct an
emulator for the coarse model

2. Link the coarse and accurate models - by parametrising the relationship between the two simulators, we use
information from the coarse emulator to build a prior emulator for f*(z)

3. Emulate the accurate model - design for and evaluate a small number of runs of f(z), use these evaluations
to update the prior emulator

Stages 1 and 3 in this process are applications of standard emulation methodology discussed extensively in the Toolkit.
Stage 2 is unique to multiscale emulation and the combination of information obtained from the emulator f¢(x) with
beliefs about the relationship between the two models is at the heart of this approach.

13.20. Thread Variant: Two-level emulation of the core model using a fast approximation 95

Multi-Output GP Emulator Documentation, Release 0.6.0

13.20.4 Emulating the coarse model

To represent our uncertainty about the high-dimensional coarse computer model f¢(z), we build a coarse emulator for
the coarse simulator. This gives an emulator of the form:

[(@) = m®(x) + w(z)

where m¢(x) represents the emulator mean function, and w®(x) is a stochastic residual process with a specified
covariance function.

The choice of the methods of emulator construction depends on the problem. In the case where the coarse simulator
is very fast and very large amounts of model evaluations can be obtained for little expense, we may consider a purely
empirical method of emulator construction as described in the procedure for the empirical construction of a Bayes
linear emulator (ProcBuildCoreBLEmpirical). When the coarse simulator requires a moderate amount of resource to
evaluate (albeit far less than f“(x)) and when appropriate prior beliefs about the model are available, then we can
apply the fully-Bayesian methods of the thread for the analysis of the core model using Gaussian process methods
(ThreadCoreGP) or the Bayes linear methods of ThreadCoreBL.

The manner in which we construct the emulator is not important, merely that we obtain an emulator as described
in the form of either numerical estimates, adjusted beliefs, or posterior distributions for the emulator mean function
parameters 3¢, the variance/correlation hyperparameters {(c¢)2, 3¢}, and an updated residual process. If the coarse
emulator is built using Bayes linear methods, the necessary mean, variance and covariance specifications are provided
within the relevant thread. Details of how to obtain the corresponding quantities for a fully-Bayesian emulator will be
provided in a later release of the toollkit.

13.20.5 Linking the coarse and accurate emulators

Given that the coarse simulator is informative for the accurate simulator, we can use our coarse emulator as a basis
for constructing our prior beliefs for the emulator of f*(x). To construct such a prior, we model the relationship
between the two simulators and then combine information from f¢(2) with appropriate belief specifications about this
relationship. We express our emulator for the accurate model in a similar form as the coarse emulator

[(@) = m®(x) + w(z),
In general, we express the accurate emulator in terms of either the coarse simulator itself or elements of the coarse
simulator in conjunction with some additional parameters which capture how we believe the two simulators are related.
There are many ways to parametrise the relationship between the two computer models. Common approaches include:

Single multiplier: A simple approach to linking the computer models is to consider the accurate simulator to be a
re-scaled version of the coarse simulator plus additional residual variation. This yields an accurate emulator of the
form:

F (@) = pf(a) + v (2),

where p is an unknown scaling parameter, and w®'(z) is a new stochastic residual process unique to the accurate
computer model. We may consider the single multiplier method when we believe that the difference in behaviour
between the two models is mainly a matter of scale, rather than changes in the shape or location of the output.

In this case, we can consider the mean function of the accurate emulator to be m®(z) = pm¢(x), and the residual
process can be expressed as w®(x) = pw(z) + w® ().

Regression multipliers: When the coarse emulator mean function takes a linear form, m®(z) = 3_; B5(x)h;(z),
the single multiplier method can be generalised. Instead of re-scaling the value of the coarse simulator itself, we can
consider re-scaling the contributions from each of the regression basis functions to the emulator’s mean function. This

96 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

gives an accurate emulator of identical structure to the coarse emulator though with modified values of the regression
coefficients,

F@) = 3 pB5hs (@) + pu(@) + u (@)

where p; is an unknown scaling parameter for basis function h;(z), and p,, scales the contribution of the coarse
residual process to the accurate emulator. We might choose to use this regression form, for example, when we consider
that each term in the regression represents a physical process and the effects represented by h;(z) change as we move
between the the two simulators.

In this case, we can consider the mean function of the accurate emulator to be m*(z) = »; 87h;(x) where 37 =
p;35, and the residual process can be expressed as w(x) = p,w(z) + w® (z). In some cases it can be appropriate
to express this relationship in the alternative form 37 = p; 37 4 ;, where ; is an additional unknown parameter. This
alternative form can better accommodate models which have mean function effects which “switch on” as we move
onto the accurate model.

When the mean function of the emulators has a linear form, the single multiplier method is a special case of the
regression multipliers method obtained by setting p; = p* = p.

Spatial multiplier: Similar to the single multiplier method, we still consider the accurate simulator to be a re-scaling
of the coarse simulator. However, the scaling factor is no longer a single unknown value but a stochastic process, p(x),
over the input space.

f(@) = plx) f(x) + w (z).

This spatial multiplier approach is applicable when we expect the nature of the relationship between the two models
to change as we move throughout the input space. Similarly to (1), we can write the mean function of the accurate
emulator to be m®(x) = p(z)m¢(x), and the residual process can be expressed as w*(x) = p(z)w(x) + w*' ().

In general, we obtain a form for the accurate emulator given by the appropriate expressions for m®(x) and w*(z).
Each of these components is expressed in terms of (elements of) the emulator for f¢(z) and an additional residual
process w®(x), and is parametrised by a collection of unknown linkage hyperparameters p.

13.20.6 Specifying beliefs about p; and w"(x)

Given the coarse emulator f¢(z) and a model linking f°(x) to f®(z), then a prior specification for p and w*(z) are
sufficient to develop a prior for the emulator for f*(z). In general, our uncertainty judgements about p and w*(z) will
be problem-specific. For now, we describe a simple structure that these beliefs may take and offer general advice for
making such statements.

We begin by considering that p; and w®’(x) are independent of 3¢ and w*(x). The simplest general specification of
prior beliefs for the multipliers p corresponds to considering that there exists no known systematic biases between the
two models. This equates to the belief that the expected value of m®(x) is the same as m®(x), which implies

E[p;] =1
The simplest specification for the variance and covariance of the p; is to parametrise the variance matrix by two
constants 0’% and o such that

Var[p;] = o}

COI‘I'[pj, pk] =a,i#]

where cri > 0 and o € [—1,1]. This belief specification is relatively simple. However by adjusting the value of UIQ)
we can tighten or relax the strength of the relationship between the two simulators. By varying the value of o we
can move from beliefs that the accurate simulator is a direct re-scaling of the coarse simulator (method (1) above)

13.20. Thread Variant: Two-level emulation of the core model using a fast approximation 97

Multi-Output GP Emulator Documentation, Release 0.6.0

when o = 1, to a model where the contribution from each of the regression basis functions varies independently
when o = (. Specification of these values will typically come from expert judgement. However, performing a small
number of paired evaluations on the two simulators and assessing the degree of association can prove informative
when specifying values of 0'2 and «. Additionally, considering heuristic statements can be insightful - for example,
the belief that it is highly unlikely that 37 has a different sign to 37 might suggest the belief that 3sd]p;] = 1.

For method (3), the corresponding beliefs would be that the prior mean of the stochastic process p(x) was the constant
1, and that the prior variance was aﬁ with a given correlation function (likely of the same form as w®(z)).

Beliefs about w®’ () are more challenging to structure. In general, we often consider that the w®’(z) behaves similarly
to w°(x) and so has a zero mean, variance (0)?, and the same correlation function and hyperparameter values as
w®(x). More complex belief specifications can be used when we have appropriate prior information relevant to those
judgements. For example, we may wish to have higher values of Corr[p;, pr] when h;(z) and hy(z) are functions of
the same input parameter or are of similar functional forms.

13.20.7 Constructing the prior emulator for f°(z)
In the Bayes linear approach to emulation, our prior beliefs about the emulator f®(x) are defined entirely by the

expectation and variance. Using the regression multiplier method (2) of linking the simulators, these beliefs are as
follows:

ZE pi 8511y (@) + Elpyw®(x)] + Elw® ()]

Var[f%(x ZZh (x)Covp; B, prBr] + Var[py,w®(z)] + Var[w® (z)] + 2Zh)Cov[p; B35, puww© ()]

where the constituent elements are either expressed directly in terms of our beliefs about p; and w® (z), or are obtained
from the expressions below:

Elp; 7] = Elp;]E[57]
Elpww®(z)] = E[pw]E[w(z)]
Var[p,w(w)] = Var[p,|Varfw(2)] + Var[pw JE[w® (2)]* + E[p,,]* Var[w® (z)]

Covlp; B, o1 B
Cov[pjﬁj bl pww ()

Cov(p;, pi]Cov[B5, Bi] + Covlp;, pr]E[BFIE[BL] + Cov[B5, Bi]E|p;]E[pi]
Covlp;, puw]Cov[f5, w(x)] + Covlp;, pu |E[SFIE[w (x)] + Cov[5, w*(x)|E[p;]E[pu]
Expressions for the single multiplier approach are obtained by replacing all occurrences of p; and p,, with the single

parameter p and beliefs about that parameter are substituted into the above expressions with Corr|p, p] = 1. Similarly
for the spatial multiplier method (3), p, and p,, are replaced by the process p(x).

]
]

In the case where the coarse simulator is well-understood, much of the uncertainties surrounding the coarse coefficients
3¢ and the coarse residuals w(x) will be eliminated. Any unresolved variation on these quantities is often negligible
in comparison to the other uncertainties associated with f(z). In such cases, we may make the assumption that the
f35 (and hence the w*(z)) are known and thus substantially simplify the expressions for E[f*(z)] and Var[f“(z)] as
follows:

ZE pi19; (@) + Elpulut () + Elw (x)]
Var{f* (Z Zg] 2)Covlp;. pi] + w' () Varlp,] + Varfuw® (2)] + 2 Zg] (x)Cov[p;. pu]

where we define g;(z) = Bsh;j (x). These simplifications substantially reduce the complexity of the emulation calcu-
lations as now the only uncertain quantities in f*(x) are p;, p,, and w*' ().

These quantities are sufficient to describe the Bayes linear emulator of f%(x). The Gaussian process approach requires
a probability distribution for f*(x), which will be taken to be Gaussian with the above specified mean and variance.

98 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

13.20.8 Design for the accurate simulator

We are now ready to make a small number of evaluations of the accurate computer model and update our emulator for
the f%(x). Since the accurate computer model is comparatively very expensive to evaluate, this design will be small —
typically far fewer runs than those available for the coarse simulator.

Due to the small number of design points, the choice of design is particularly important. If the cost of evaluating
f%(x) permits, then a space-filling design for the accurate simulator would still be effective. However as the number
of evaluations will be typically limited, we may consider seeking an optimal design which has the greatest effect in re-
ducing uncertainty about f%(x). The general procedure for generating such a design is described in ProcOptimal LHC,
where the design criterion is given by the adjusted (or posterior) variance of the accurate emulator given the simulator
evaluations (see the procedure for building a Bayes linear emulator for the core problem (ProcBuildCoreBL) and the
expression given above).

13.20.9 Building the accurate emulator

Our prior beliefs about the accurate emulator and the design and evaluations of the accurate simulator provide sufficient
information to directly apply the Bayesian emulation methods described in ThreadCoreBL or ThreadCoreGP. Once
we have constructed the accurate emulator we can then perform appropriate diagnostics and validation, and use the
emulator as detailed for suitable post-emulation tasks.

13.21 Thread: Emulators with derivative information

13.21.1 Overview

This thread describes how we can use derivative information in addition to standard function output to build an emu-
lator. As in the core thread for analysing the core problem using GP methods (7hreadCoreGP) the following apply:

e We are only concerned with one simulator.
* The simulator only produces one output, or (more realistically) we are only interested in one output.
* The output is deterministic.
* We do not have observations of the real world process against which to compare the simulator.
e We do not wish to make statements about the real world process.
Each of these aspects of the core problem is discussed further in page DiscCore.

However now, we also assume we can directly observe first derivatives of the simulator either through an adjoint
model or some other technique. This thread describes the use of derivative information when building an emulator for
the fully Bayesian approach only, thus we require the further restriction:

* We are prepared to represent the simulator as a Gaussian process.

There is discussion of this requirement in page DiscGaussianAssumption. If we want to adopt the Bayes linear
approach it is still possible to include derivative information and this may be covered in a future release of the toolkit.
Further information on this can be found in Killeya, M.R.H., (2004) “Thinking Inside The Box” Using Derivatives to
Improve Bayesian Black Box Emulation of Computer Simulators with Applications to Compartmental Models. Ph.D.
thesis, Department of Mathematical Sciences, University of Durham.

Readers should be familiar with ThreadCoreGP, before considering including derivative information.

13.21. Thread: Emulators with derivative information 99

Multi-Output GP Emulator Documentation, Release 0.6.0

13.21.2 Active inputs

As in ThreadCoreGP

13.21.3 The GP model

As in ThreadCoreGP the first stage in building the emulator is to model the mean and covariance structures of the
Gaussian process that is to represent the simulator. As explained in the definition page of a Gaussian process (DefGP),
a GP is characterised by a mean function and a covariance function. We model these functions to represent prior beliefs
that we have about the simulator, i.e. beliefs about the simulator prior to incorporating information from the training
sample. The derivatives of a Gaussian process remain a Gaussian process and so we can use a similar approach to
ThreadCoreGP here.

The choice of the emulator prior mean function is considered in the alternatives page AltMeanFunction. However
here we must ensure that the chosen function is differentiable. In general, the choice will lead to the mean function
depending on a set of hyperparameters that we will denote by .

The most common approach is to define the mean function to have the linear form m(x) = h(x)™ 3, where h(-) is
a vector of regressor functions, whose specification is part of the choice to be made. As we are including derivative
information in the training sample we must ensure that h(-) is differentiable. This will then lead to the derivative of the
mean function: 8%m(ar:) = %h(m)Tﬂ. For appropriate ways to model the mean, both generally and in linear form,
see AltMeanFunction.

The covariance function is considered in the discussion page DiscCovarianceFunction and here must be twice dif-
ferentiable. Within the toolkit we will assume that the covariance function takes the form o2c(-, -), where o2 is an
unknown scale hyperparameter and c(-,-) is called the correlation function indexed by a set of correlation hyper-

parameters 6. The correlation then between a point, z;, and a derivative w.r.t input k at z;, (denoted by x§-k)), is

Lc(xi x;). The correlation between a derivative w.r.t input & at x;, (denoted by a:(k)), and a derivative w.r.t input
61(}9) [V} T
J
. 2
at x;, (denoted by xy)), is WC(%‘, x;). The choice of correlation function is considered in the alternatives page
IZ ZL’7
AltCorrelationFunction.

The most common approach is to define the correlation function to have the Gaussian form c(z;, z;) = exp{—(z; —
z;)TC(z; — x;)}, where C is a diagonal matrix with elements the inverse squares of the elements of the § vector. The

correlation then between a point, z;, and a derivative w.r.t input k at point 7, :v;-k), is:
9 2 (k) (k) T
oz, xj) = (951 — T) exp{—(z; —z;) C(x; — z;)},
8x§»k) ! 62{k} / ! !

the correlation between two derivatives w.r.t input & but at points ¢ and j is:

2
52 2 4 (:rgk) — mgk)>
0P) T B T T

exp{—(z; — ;)T C(w; —)},

and finally the correlation between two derivatives w.r.t inputs k and [, where k £ [, at points ¢ and j is:

o 4 B 0 (O O T

13.21.4 Prior distributions

As in ThreadCoreGP

100 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

13.21.5 Design

The next step is to create a design, which consists of a set of points in the input space at which the simulator or adjoint
is to be run to create the training sample. Design options for the core problem are discussed in the alternatives page
on training sample design (AlrCoreDesign). Here though, we also need to decide at which of these points we want
to obtain function output and at which points we want to obtain partial derivatives. This adds a further consideration
when choosing a design option but as yet we don’t have any specific design procedures which take into account the
inclusion of derivative information.

If one of the design procedures described in AltCoreDesign is applied, the result is an ordered set of points D =
{x1,29,...,2,}. Given D, we would now need to choose at which of these points we want to obtain function output
and at which we want to obtain partial derivatives. This information is added to D resulting in the design, D of length
7. A point in D has the form (w,d), where d denotes whether a derivative or the function output is to be included at
that point. The simulator, f(-), or the adjoint of the simulator, f(-), (depending on the value of each d), is then run at
each of the input configurations.

One suggestion that is commonly made for the choice of the sample size, n, for the core problem is n = 10p, where p
is the number of inputs. (This may typically be enough to obtain an initial fit, but additional simulator runs are likely
to be needed for the purposes of validation, and then to address problems raised in the validation diagnostics.) There
is not, however, such a guide for what 7 might be. If we choose to obtain function output and the first derivatives w.r.t
to all inputs at every location in the design, then we would expect that fewer than 10p locations would be required;
how many fewer though, is difficult to estimate.

13.21.6 Fitting the emulator

Given the training sample of function output and derivatives, and the GP prior model, the process of building the
emulator is given in the procedure page ProcBuildWithDerivsGP

The result of ProcBuildWithDerivsGP is the emulator, fitted to the prior information and training data. As with the
core problem, the emulator has two parts, an updated GP (or a related process called a t-process) conditional on
hyperparameters, plus one or more sets of representative values of those hyperparameters. Addressing the tasks below
will then consist of computing solutions for each set of hyperparameter values (using the GP or t-process) and then an
appropriate form of averaging of the resulting solutions.

Although the fitted emulator will correctly represent the information in the training data, it is always important to val-
idate it against additional simulator runs. For the core problem, the process of validation is described in the procedure
page ProcValidateCoreGP. Here, we are interested in predicting function output, therefore as in ProcValidateCoreGP
we will have a validation design D’ which only consists of points for function output; no derivatives are required and
as such the simulator, f(-), not the adjoint, f (+), is run at each x; in D’. Then in the case of a linear mean function,
weak prior information on hyperparameters 5 and o, and a single posterior estimate of §, the predictive mean vector,
m*, and the predictive covariance matrix, V*, required in ProcValidateCoreGP, are given by the functions m*(-) and
v*(+,-) which are given in ProcBuildWithDerivsGP. We can therefore validate an emulator built with derivatives us-
ing the same procedure as that which we apply to validate an emulator of the core problem. It is often necessary, in
response to the validation diagnostics, to rebuild the emulator using additional training runs which can of course, in-
clude derivatives. We hope to extend the validation process using derivatives as we gain more experience in validation
diagnostics and emulating with derivative information.

13.21.7 Tasks

Having obtained a working emulator, the MUCM methodology now enables efficient analysis of a number of tasks
that regularly face users of simulators.

13.21. Thread: Emulators with derivative information 101

Multi-Output GP Emulator Documentation, Release 0.6.0

Prediction

The simplest of these tasks is to use the emulator as a fast surrogate for the simulator, i.e. to predict what output the
simulator would produce if run at a new point in the input space. In this thread we are concerned with predicting the
function output of the simulator. The prediction of derivatives of the simulator output w.r.t the inputs, at a new point in
the input space is covered in the thread ThreadGenericEmulateDerivatives. The process of predicting function output
at one or more new points for the core problem is set out in ProcPredictGP. When we have derivatives in the training
sample the process of prediction is the same as for the core problem, but anywhere D, ¢, A, e etc are required, they

should be replaced with D, £, A, é.

For some of the tasks considered below, we require to predict the output not at a set of discrete points, but in effect the
entire output function as the inputs vary over some range. This can be achieved also using simulation, as discussed in
the procedure page for simulating realisations of an emulator (ProcSimulationBasedInference).

Uncertainty analysis

Uncertainty analysis is the process of predicting the simulator output when one or more of the inputs are uncertain.
The procedure page on uncertainty analysis using a GP emulator (ProcUAGP) explains how this is done for the core
problem. We hope to extend this procedure to cover an emulator built with derivative information in a later release of
the toolkit.

Sensitivity analysis

In sensitivity analysis the objective is to understand how the output responds to changes in individual inputs or groups
of inputs. The procedure page ProcVarSAGP gives details of carrying out variance based sensitivity analysis for the
core problem. We hope to extend this procedure to cover an emulator built with derivative information in a later release
of the toolkit.

13.21.8 Examples

One dimensional example

13.21.9 Additional Comments, References, and Links

If we are interested in emulating multiple outputs of a simulator, there are various approaches to this discussed in
the alternatives page AltMultipleOutputsApproach. If the approach chosen is to build a multivariate GP emulator
and derivatives are available, then they can be included using the methods described in this page combined with the
methods described in the thread for the analysis of a simulator with multiple outputs (ThreadVariantMultipleOutputs).
A variant thread on multiple outputs with derivatives (Thread VariantMultipleOutputsWithDerivatives) page may be
included in a later release of the toolkit.

13.22 Procedure: Adaptive Sampler for Complex Models (ASCM)

13.22.1 Description and Background

This procedure aims at sequentially selecting the design points and updating the information at every stage. The
framework used to implement this procedure is the Bayesian decision theory. Natural conjugate priors are assumed for
the unknown parameters. The ASCM procedure allows for learning about the parameters and assessing the emulator
performance at every stage. It uses the Bayesian optimal design principals in Optimal design.

102 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

13.22.2 Inputs

The design size n, the subdesign size n;, a counter nn = 0, initial design Dy usually a space filling design, the
candidate set E of size N, also another space filling design usually chosen to be a grid defined on the design
space X.

The output at the initial design points, Y (Dy).
A model for the output, for simplicity, the model is chosen to be Y (z) = X0 + Z(z).

A covariance function associated with the Gaussian process model. In the Karhunen-Loeve method the “true”
covariance function is replaced by a truncated version of the K-L expansion DiscKarhunenLoeveExpansion.

A prior distribution for the unkonwn model parameters 6, which is taken here to be N (u, V') .
An optimality criterion.

Note that 3, is within-design process covariance matrix and 3, the between design and non-design process
covariance matrix, and similarly, in the case of unknown o2, ¥,,,, = 0?R,,, and ©,,, = 0> R,,, where R,,,,, R,,.
are the correlation matrices.

13.22.3 Outputs

* A sequentially chosen optimal design D.

* The value of the chosen criterion C.

* The posterior distribution 7(©[Y;,) and the predictive distribution f(Y;.|Y;,), where Y,, is the vector on n ob-

served outputs and Y. is the vector of r unobserved outputs. The predictive distribution is used as an emulator.

13.22.4 Procedure

® _Noow

. Check if the candidate set E contains any points of the initial design points Dy. If it does then E' = E \ Dy.

Compute the posterior distribution for the unknown parameters 7 (0©|Y,) and the predictive distribution
f(Y]Y,,). The posterior distribution can be obtained analytically or numerically.

Choose the next design point D; or points to optimize the chosen criterion. The selection is done using the
exchange algorithm. The criterion is based on the posterior distribution. For example, the maximum entropy
sampling criterion has approximately the form

det(X, VXTI + %, — (X, VX + =,) (X, VX +5,,) " HX, VX +5,.)))

if the predictive distribution f(Y;|Y;,) is a Gaussian process or approximately the form a*(X,. VX! + R,, —
(X, VXT + Rop) (X VXL + Ryp) Y X, VXT + R,,)) if the predictive distribution is a Student ¢ process.
They are almost the same because a* is just a constant not dependent on the design; the unknown o2 does not
affect the choice of the design, in this case.

Observe the output at the design points D; selected in step 3. The observation itself is useful for the purposes of
assessing the uncertainty about prediction. It is not neccesary for the computing the criterion but it is necessary
for computing the predictive distribution f(Y,.|Y.,).

Update the predictive distribution f(Y;.|Y;,).
Compute the measures of accuracy in order to assess the improvement of prediction.
Update the candidate set E = E'\ D;, the design S, D = D U D;, and the design size nn = nn +n, .

Stop if nn = n or a certain value of the criterion is achieved stop otherwise go to step 3.

13.22. Procedure: Adaptive Sampler for Complex Models (ASCM) 103

Multi-Output GP Emulator Documentation, Release 0.6.0

13.22.5 Additional Comments, References, and Links

The above algorithm is a foundation for several other versions under development. The criterion mentioned is the
entropy criterion (see step 3 of the procedure), but in principle any other optimal design criterion can be use. The
methodology used here allows for learning about the parameters, that is to say the posterior distributions are computed
at every design stage, using a basic random regression Bayesian formulation. It also employs the K-L expansion, but
any set of basis functions can be used.

The more fully adaptive version, which is under development will allow the variance parameters on the regression
terms to be updated, using hyper-parameters. The aim is to allow adaptation to (i) global smoothness, because low/high
varying basis function represent less/more smoothness and (ii) local smoothness.

13.23 Procedure: Multivariate lognormal approximation for correla-
tion hyperparameters

13.23.1 Description and Background

The posterior distribution 7*(0) of the hyperparameter vector § is given in the procedure page for building a Gaussian
process emulator for the core problem (ProcBuildCoreGP) in the case of the core problem (with linear mean function
and weak prior information). The ideal way to compute the emulator in this case is to generate a sample of values of
0 from this distribution, but that is itself a complex computational task. We present here a simpler method based on a
lognormal approximation to 7*().

13.23.2 Inputs

e An emulator as defined in ProcBuildCoreGP, using a linear mean and a weak prior.

¢ The mode of the posterior 6 as defined in the discussion page on finding the posterior mode of correlation lengths
(DiscPostModeDelta).

9g(7)
aTlaTk

dg(7)

92 , as defined in DiscPostModeDelta.
-

* The p x p Hessian matrix

with (k,1)-th entry

13.23.3 Outputs

* A set of s samples for the correlation lengths ¢, denoted as 5.

* A posterior mean 772*(-) and a covariance function @*(-, -), conditioned on the samples &

13.23.4 Procedure

d%g(1)
or?

-1
* Define V = — < > . Draw s samples from the p-variate normal distribution N'(7, V'), call these

samples 7.
« Calculate the samples 6 as 6 = exp(7/2).

* Given the set of s samples 4, the posterior mean and variance m*(-), @*(-,) can be calculated with the same
formulae given in the procedure page for sampling the posterior distribution of the correlation lengths (ProcM-
CMCDeltaCoreGP), or in more detail in the procedure page for predicting the simulator’s outputs using a GP
emulator (ProcPredictGP).

104 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

13.23.5 Additional Comments

Most standard statistical computing packages have facilities for taking random samples from a multivariate normal
distribution.

When an input is not particularly active, the posterior distribution of the correlation lengths 73 (§) can be very flat with
respect to that input and obtain its maximum for a large value of 0. This can cause the respective entry of the matrix V'
to be very large, and the samples § that correspond to this input to have both unrealistically large and small values. An
inspection of the samples that are returned by the above procedure is recommended, especially in high dimensional
input problems, where less active inputs are likely to exist. If the sampled correlation lengths that correspond to one
or more inputs are found to have very large (e.g. >50) and very small (e.g. < 0.5) values at the same time, a potential
remedy could be to fix the values of these samples to the respective entries of the § vector.

13.23.6 References

This method is introduced in the following report.

* Nagy B., Loeppky J.L. and Welch W.J. (2007). Fast Bayesian Inference for Gaussian Process Models. Technical
Report 230, Department of Statistics, University of British Columbia.

Note however that the authors indicate also that the method works well when the correlation function has the Gaussian
form but may not work so well in the case of the exponential power form (see the alternatives page on emulator prior
correlation function (AltCorrelationFunction):

* Nagy B., Loeppky J.L. and Welch W.J. (2007). Correlation parameterization in random function models to
improve normal approximation of the likelihood or posterior. Technical Report 229, Department of Statistics,
University of British Columbia.

13.24 Procedure: lterate the single step emulator using an approxi-
mation approach
13.24.1 Description and Background

This page is concerned with task of emulating a dynamic simulator, as set out in the variant thread for dynamic
emulation (ThreadVariantDynamic).

We have an emulator for the single step function wy = f(w¢—1,as,¢), and wish to predict the full time series
wi, ..., wr for a specified initial szate variable wy, time series of forcing variables aq, . ..,ar and simulator pa-
rameters ¢. It is not possible to analytically derive a distribution for wy, ..., wy if f(-) is modelled as a Gaussian

Process, so here we use an approximation based on the normal distribution to estimate the marginal distribution of
each of wy,...,wp.

13.24.2 Inputs
* An emulator for the single step function w; = f(wi_1,a, @), formulated as a GP or 7-process conditional on
hyperparameters, plus a set of hyperparameter values 1), ... (%),
¢ An initial value for the state variable wy.
* The values of the forcing variables ay, ..., ar.

* The values of the simulator parameters ¢.

13.24. Procedure: lterate the single step emulator using an approximation approach 105

Multi-Output GP Emulator Documentation, Release 0.6.0

13.24.3 Outputs

* Approximate marginal distributions for each of wy, ..., wr. The distribution of each w, is approximated by a
normal distribution with a specified mean and variance.

13.24.4 Procedure

For a single choice of emulator hyperparameters 6, we approximate the marginal distribution of w; by the normal
distribution N, (pt, Vi)

We have

M1 = m*(WO, ai, (b)a
Vi = v {(wo, a1,), (wo, a1, @)}

The mean and variance are defined recursively:

Hi+1 = E[m*(wt7at+17 ¢)|f(D)7 9]7
V;f+1 = E[v*{(whaﬂrl» ¢)v (wtvatJrlv ¢)}|f(D)v 9} + Var[m*(wt»atnle ¢)|f(D)v 9}’

where the expectations and variances are taken with respect to wy, where wy ~ N, (¢, V3)

Explicit formulae for p;+; and V;4; can be derived in the case of a linear mean and a separable Gaussian covari-
ance function. The procedure for calculating p;4; and Vi, is described in ProcUpdateDynamicMeanAndVariance.
Otherwise, we can use simulation to estimate p;41 and V;41. A simulation procedure is given in ProcApproximate-
UpdateDynamicMeanandVariance.

13.24.5 Integrating out the emulator hyperparameters

Assuming we have s > 1, we can integrate out the emulator hyperparameters to obtain the unconditional mean and
variance of w; using Monte Carlo estimation. In the following procedure, we define N to be the number of Monte
Carlo iterations, and for notational convenience, we suppose that N < s. For discussion of the choice of N, including
the case NV > s, see the discussion page on Monte Carlo estimation, sample sizes and emulator hyperparameter sets
(DiscMonteCarlo).

1. Fori=1,2,..., N fix the hyperparameters at the value #(*), and calculate the corresponding mean and variance

of w;, which we denote by ,u,Ez) and Vt(i).

2. Estimate E[w;|f(D)] by

3. Estimate Var[w;|f(D)] by

106 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

13.25 Procedure: Use simulation to recursively update the dynamic
emulator mean and variance in the approximation method

13.25.1 Description and Background
This page is concerned with task of emulating a dynamic simulator, as set out in the variant thread on dynamic
emulation (ThreadVariantDynamic).

The approximation procedure for iterating the single step emulator (ProcApproximatelterateSingleStepEmulator) re-
cursively defines

pr1 = Blm* (we, a1, 0)| f(D)],
Vit1 = E™{(we, ar11, 8), (e, ay1, 9) (D)) + Var[m™ (wy, ar1, 9)| f(D)],

where the expectations and variances are taken with respect to wy, with w; ~ N,.(p, Vz). If the single step emulator
has a linear mean and a separable Gaussian covariance function, then p;; and V;; can be computed explicitly, as
described in the procedure page for recursively updating the dynamic emulator mean and variance (ProcUpdateDy-
namicMeanAndVariance). Otherwise, simulation can be used, which we describe here.

13.25.2 Inputs

e uyand V;

* The single step emulator, conditioned on training inputs D, and hyperparameters €, with posterior mean and
covariance functions m*(-) and v*(-, -) respectively.

13.25.3 Outputs

* Estimates of p;41 and V41

13.25.4 Procedure

We describe a Monte Carlo procedure using N Monte Carlo iterations. For discussion of the choice of IV, see the
discussion page on Monte Carlo estimation (DiscMonteCarlo).

l. Fori=1,..., N, sample wt(i) from N (g, Vi)
2. Bstimate 141 by fi1 = % S, m*(wi” ars1, 0)
3. Estimate V;;; by

1 N

N

> 1 wg/ (i i vy, (@ -2

Vigr = NZU {(wg),at+1,¢), (wt()aat+1a¢)} + v — Z (m (wt()aat+17¢) - Mt+1)
i=1

N -1+
i=1

13.26 Procedure: Automatic Relevance Determination (ARD)

We describe here the method of Automatic Relevance Determination (ARD) where the correlation length scales 0; in a
covariance function can be used to determine the input relevance. This is also known as the application of independent
priors over the length scales in the covariance models.

The purpose of the procedure is to perform screening on the simulator inputs, identifying the active inputs.

13.25. Procedure: Use simulation to recursively update the dynamic emulator mean and variand®7
in the approximation method

Multi-Output GP Emulator Documentation, Release 0.6.0

ARD is typically applied using a zero mean Gaussian Process emulator. Provided the inputs have been standardised
(see the procedure page on data preprocessing (ProcDataPreProcessing)), the correlation length scales may be directly
used as importance measures. Another case where ARD may be used is with non-zero mean function Gaussian Process
where we wish to identify factor effects in the residual process. For example with a linear mean, correlation length
scales indicate non-linear and interaction effects. If the effect of a factor is strictly linear with no interaction with other
factors, it can still be screened out by subtracting from the simulator output prior to emulation.

13.26.1 Choice of Covariance Function

To implement the ARD method, a range of covariance functions can be used. In fact any covariance function that has
a length scale vector included can be used for ARD, for example the squared exponential covariance used in most of
the toolkit. Such a covariance function is the Rational Quadratic (RQ) :

v(xp, q) = 02[1+ (xp — 24)" P71 (z, — 24)/(2c)] ~ where o is the scale parameter and P = diag(d;)? a diagonal
matrix of correlation length scale parameters. Taking the limit @ — oo parameter, we obtain the squared exponential
kernel.

Assuming p input variables, each hyperparameter d; is associated with a single input factor. The §; hyperparameters
are referred to as characteristic length scales and can be interpreted as the distance required to move along a particular
axis for the function values to become uncorrelated. If the length-scale has a very large value the covariance becomes
almost independent of that input, effectively removing that input from the model. Thus length scales can be viewed as
a total effect measure and used to determine the relevance of a particular input.

Lastly, if the simulator produces random outputs the emulator should no longer exactly interpolate the observations.
In this case, a nugget term v should be added to the covariance function to capture the response uncertainty.

13.26.2 Implementation

Given a set of simulator runs, the ARD procedure can be implemented in the following order:

1. Standardisation. It is important to first standardise the input data so all input factors operate on the same scale.
If rescaling is not done prior to the inference stage, length scale parameters will generally have larger values for
input factors operating on larger scales.

2. Inference. The Maximum-A-Posteriori (MAP) values of the length scale hyper-parameters are typically ob-
tained by iterative non-linear optimisation using standard algorithms such as scaled conjugate gradients, al-
though in a fully Bayesian treatment posterior distributions could be approximated using Monte Carlo methods.
Maximum-A-Posteriori (MAP) is the process of identifying the mode of the posterior distribution of the hyper-
parameter (see the discussion page DiscPostModeDelta). One difficulty using ARD stems from the use of an
optimisation process since the optimisation is not guaranteed to converge to a global minimum and thus ensure
robustness. The algorithm can be run multiple times from different starting points to assess robustness at the
cost of increasing the computational resources required. In case of a very high dimensional input space, maxi-
mum likelihood may be too costly or intractable due to the high number of free parameters (one length scale for
each dimension). In this case Welch at al (1992) propose a constrained version of maximum likelihood where
initially all inputs are assumed to have the same length scale and iteratively, some inputs are assigned separate
length scales based on the improvement in the likelihood score.

3. Validation. To ensure robustness of the screening results, prior to utilising the length scales as importance
measures the emulator should be validated as described in procedure page ProcValidateCoreGP.

An example of applying the ARD process is provided in ExamScreeningAutomaticRelevanceDetermination.

13.26.3 References

Williams, C. K. I. and C. E. Rasmussen (2006). Gaussian Processes for Machine Learning. MIT Press.

108 Chapter 13. Uncertainty Quantification Methods

http://www.gaussianprocess.org/gpml/

Multi-Output GP Emulator Documentation, Release 0.6.0

William J. Welch, Robert. J. Buck, Jerome Sacks, Henry P. Wynn, Toby J. Mitchell and Max D. Morris. ” Screening,
Predicting, and Computer Experiments”, Technometrics, Vol. 34, No. 1 (Feb., 1992), pp. 15-25. Available at http:
/Iwww.jstor.org/stable/1269548.

13.27 Procedure: Calculation of adjusted expectation and variance

13.27.1 Description and Background
In the context of Bayes linear methods, the Bayes linear adjustment is the appropriate method for updating prior
second-order beliefs given observed data. The adjustment takes the form of linear fitting of our beliefs on the observed

data quantities. Specifically, given two random vectors, B, D, the adjusted expectation for element B;, given D, is the
linear combination ag + a’ D minimising E[B; — a¢ — a® D)?] over choices of {ag, a}.

13.27.2 Inputs

* E[B], Var[B] - prior expectation and variance for the vector B
 E[D], Var[D] - prior expectation and variance for the vector D
» Cov[B, D] - prior covariance between the vector B and the vector B

e D,ps - observed values of the vector D

13.27.3 Outputs

* Ep[B] - adjusted expectation for the uncertain quantity B given the observations D

* Varp[B]- adjusted variance matrix for the uncertain quantity B given the observations D

13.27.4 Procedure
The adjusted expectation vector, Ep[B] is evaluated as
Ep[B] = E[B] 4 Cov[B, D]Var[D] " (Doys — E[D])

(If Var[D] is not invertible, then we use a generalised inverse such as Moore-Penrose).

The adjusted variance matrix for B given D is

Varp[B] = Var[B] — Cov[B, D|Var[D]~'Cov[D, B]

13.27.5 Additional Comments

See DiscBayesLinearTheory for a full description of Bayes linear methods.

13.27. Procedure: Calculation of adjusted expectation and variance 109

http://www.jstor.org/stable/1269548
http://www.jstor.org/stable/1269548

Multi-Output GP Emulator Documentation, Release 0.6.0

13.28 Procedure: Predict simulator outputs using a BL emulator

13.28.1 Description and Background

A Bayes linear (BL) emulator is a stochastic representation of knowledge about the outputs of a simulator based
on a second-order belief specification for an unknown function. The unknown function in this case is the simulator,
viewed as a function that takes inputs and produces one or more outputs. One use for the emulator is to predict what
the simulator would produce as output when run at one or several different points in the input space. This procedure
describes how to derive such predictions in the case of a BL emulator such as is produced by ProcBuildCoreBL.

13.28.2 Inputs

* An adjusted Bayes linear emulator

* A single point 2’ or a set of points 2, x5, . .., 2!, at which predictions are required for the simulator output(s)

13.28.3 Outputs

* In the case of a single point, outputs are the adjusted expectation and variance at that point

* In the case of a set of points, outputs are the adjusted expectation vector and adjusted variance matrix for that
set

13.28.4 Procedure

The adjusted Bayes linear emulator will supply the following necessary pieces of information:
* An adjusted expectation Er[/3] and variance Var] for the trend coefficients 5 given the model runs F'

* An adjusted expectation Er[w(x)] and variance Var[w(x)] for the residual process w(x), at any point x, given
the model runs F

* An adjusted covariance Covp[S, w(z)] between the trend coefficients and the residual process

The adjusted expectation and variance at the new point z’ are obtained by application of ProcBLAdjust to the emulator
as described below.

Predictive mean (vector)
Then our adjusted beliefs about the expected simulator output at a single further input configuration z’ are given by:

Er[f(a")] = h(z')"Ep[B] + Epfw(z).

In the case of a set of additional inputs X', where X" is the matrix with rows 7, 2%, ..., 2/, the adjusted expectation

Ep[f(X")] = H(X")"EF[B] + Erlw(X’)

n

where f(X) is the n’-vector of simulator values with elements (f(x}), f(z5), ..., f(z,)), H(X') is the n’ x ¢ matrix
with rows h(z}), h(xh), ..., h(z],), and w(X) is the n/-vector with elements (w(z), w(z5), ..., w(x),)).

110 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

Predictive variance (matrix)

Our adjusted variance of the simulator output at a single further input configuration 2’ is given by:
Varg[f(2')] = h(z")T Varg[B)h(z") + Varp[w(z')] + 2h(2z")T Covr[B, w(z')]

In the case of a set of additional inputs X", the adjusted variance is:

Varp[f(X')] =H(X')" Varp[8]H(X') + Varp[w(X")]+
H(X")TCovp[B, w(X")] + Covplw(X'), B|H(X').

13.29 Procedure: Bayes linear method for learning about the emula-
tor residual variance

13.29.1 Description and Background

This page assumes that the reader is familiar with the concepts of exchangeability, second-order exchangeability, and
the general methodology of Bayes linear belief adjustment for collections of exchangeable quantities as discussed in
DiscAdjustExchBeliefs.

In the study of computer models, learning about the mean behaviour of the simulator can be a challenging task though
there are many tools available for such an analysis. The problem of learning about the variance of a simulator, or
the variance parameters of its emulator is more difficult still. One approach is to apply the Bayes linear methods for
adjusting exchangeable beliefs. For example, suppose our emulator has the form

f(x) = Zﬁjhj(x) + e(w),

then if our trend component is known and the residuals can be treated as second-order exchangeable then we can
directly apply the methods of DiscAdjustExchBeliefs to learn about Var[e(z)], the variance of the residual process. The
constraint on this procedure is that we require the emulator residuals to be (approximately) second-order exchangeable.
In the context of computer models, we can reasonably make this judgement in two situations:

1. The design points D = (z1,...,7,)” are such that they are sufficiently well-separated that they can be
treated as uncorrelated. This may occur due to simply having a small number of points, or having a large
number of points in a high-dimensional input space. In either case, the relative sparsity of model evaluations
means that we can express the covariance matrix of the emulator residuals as Var[e(D)] = o21,, where I, is the
n x n identity matrix and only o2 is uncertain. In this case, the residuals e(z) have the same prior mean (0), the
same prior variance (02) and every pair of residuals has the same covariance (0) therefore the residuals can be
treated as second-order exchangeable.

2. The form of the correlation function c(x, 2') and its parameters J are known. In this case, for any number or
arrangement of design points we can express Var[e(D)] = o2 R where R is a known matrix of correlations, and
o2 is the unknown variance of the residual process. Since the correlation between every pair of residuals is not
constant, we do not immediately have second-order exchangeability. However, since the form of R is known we
can perform a linear transformation of the residuals which will preserve the constant mean and variance but will
result in a correlation matrix of the form R = I,, and so resulting in a collection of transformed second-order
exchangeable residuals which can be used to learn about o2,

The general process for the adjustment is identical for either situation, however in the second case we must perform a
preliminary transformation step.

13.29. Procedure: Bayes linear method for learning about the emulator residual variance 111

Multi-Output GP Emulator Documentation, Release 0.6.0

13.29.2 Inputs

The following inputs are required:

* Output vector f(D) = (f(x1),..., f(z,)), where f(z;) is the scalar simulator output corresponding to input
vector x; in D;

* The form of the emulator trend basis functions 7 (-)
* Design matrix D = (z1,...,Zp).

* Specification of prior beliefs for w, = o2 and the fourth-order quantities wa and wx as defined below and in
DiscAdjustExchBeliefs.

We also make the following requirements:

« Either: The design points in D are sufficiently well-separated that the corresponding residuals can be considered
to be uncorrelated

* Or: The form of the correlation function, ¢(x,2’), and the values of its hyperparameters, d, (and hence the
correlations between every pair of residuals) are known.

13.29.3 Outputs

* Adjusted expectation and variance for the variance of the residual process

13.29.4 Procedure

Overview

Our goal is to learn about the variance of the residual process, e(x), in the emulator of a given computer model. Typ-
ically, we assume that our emulator has a mean function which takes linear form in some appropriate basis functions
of the inputs, and so we express our emulator as

f(z) = BT h(z) + e(x),

where £ is a vector of emulator trend coefficients, h(x) is a vector of the basis functions evaluated at input , and e(z)
is a stochastic residual process. We consider that the coefficients 8 = (51, ..., 8,) are unknown, and then work with
the derived residual quantities e; = e(x;). We assume that we consider the residual process to be weakly stationary
with mean zero a priori, which gives

ei = f(x;) = Brhi(xzs) — - — Behg(xi)
0

Varle;] = 0% = w,
where we introduce w, = o2 as the variance of e(x) for notational convenience and to mirror the notation of DiscAd-
JjustExchBeliefs.

Orthogonalisation

In the case where the emulator residuals are not uncorrelated, but can be expressed in the form Var[e] = 2R, where
R is aknown n x n correlation matrix, we are required to make a transformation in order to de-correlate the residuals
in order to obtain a collection of second-order exchangeable random quantities. To do this, we adopt the standard
approach in regression with correlated errors — namely generalised least squares.

112 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

Let @ be any matrix satisfying QQT = R, and we can then transform the emulator f(D) = X 3 + ¢ to the form
f(D)=X"B+¢,

where f/(D) = Q7 1f(D), X' = Q7 'Z, and ¢’ = Q~'e. An example of a suitable matrix) would be if we find
the eigen-decomposition of R such that R = AAAT then Q1 = A~z AT would provide a suitable transformation
matrix. Under this transformation, we have that

El¢/] = Q 'E[e] =0
Varle/] = Q 'Var[e] QT = w.I,.

Note that he transformed residuals ¢’ have both the same mean and variance as the un-transformed residuals e;, and
in particular note that Var[e;] = Var[e,] = o which is the quantity we seek to estimate. Further, the transformed
residuals e’ are second-order exchangeable as they have a common mean and variance, and every pair has a common
covariance.

Exchangeability Representation

In order to revise our beliefs about the population residual variance, we judge that the residuals e; are second-order
exchangeable. When the residuals are well-separated and uncorrelated, this is immediately true. In the case of the
known correlations, then we make this statement about the transformed residuals, eg, and proceed through the subse-
quent stages operating with the e instead of e;. For simplicity, from this point on we only discuss e; and assume that
any necessary orthogonalisation has been made.

We begin with the uncorrelated second-order exchangeable sequence of residuals e;. Suppose further that we judge
that the e are also second-order exchangeable and so we write

v; = ef = M(v) + R;(v)

where E[M(v)] = w, = o2, Var[M(v)] = w, and that the R;(v) are SOE, uncorrelated and have zero mean and
variance Var[R;(v)] = wr. We also make the fourth-order uncorrelated assumptions mentioned in DiscAdjustExch-
Beliefs.

In order to adjust our beliefs about the population residual variance, we use the residual mean square 52,

1
6% = éle,
n—gq
where ¢ = f(D) — X3 = (I, — H)f(D), where H is the idempotent matrix # = X(X"X)"'X", X is the
model matrix with i-th row equal to (hi(x;), ..., hq¢(z;)), and 3 are the least- squares estimates for 3 given by 3 =

(XTX)=1XT f(D). We could update our beliefs by other quantities, though s? has a relatively simple representation
improving the tractability of subsequent calculations.

We can now express 52 as

and

T = 1 Z(l - hkk Rk - QZ hkjekej

n —
q k k<j

and it follows that we have the follow belief statements
E[6?] = we = 02,
Var[6?] = waq + wi,
Cov[6?, M(v)] = w,

1
R (1= hi)? = 20wa +w?) Y b+ 2q(wa +w?) |

Wwr =
(n_Q) k k

13.29. Procedure: Bayes linear method for learning about the emulator residual variance 113

Multi-Output GP Emulator Documentation, Release 0.6.0

which complete our belief specification for 52 and M (v).

Variance Adjustment

Given the beliefs derived as above and the residual mean square 5 as calculated from the emulator runs and emulator
trend, we obtain the following expression for the adjusted mean and variance for M(v), the population residual

variance:

(.«J/\/ICAT2 + Wrwe

Epa[M(v)] = 24047
Vargz[M(v)] = %

13.29.5 Comments and Discussion

When approaching problems based on exchangeable observations, we are often also interested in learning about the
population mean in addition to the population variance. In terms of computer models, the primary goal is to learn
about the mean behaviour of our emulator residuals rather than the emulator variance. To combine these approaches,
we carry out the analysis in two stages. For the first stage, we carry out variance assessement as described above which
gives us a revised estimate for our residual variance, 0. In the second stage, we perform the standard Bayes linear
analysis for the mean vector. This involves following the standard methods of learning about the emulator residual
means as described in ProcBuildCoreBL, having replaced our prior value for the residual variance with the adjusted
estimate obtained from the methods above. This procedure is called a two-stage Bayes linear analysis, and is a
simpler alternative to jointly learning about both mean and variance which ignores uncertainty in the variance when
updating the mean vector.

13.29.6 References

* Goldstein, M. and Wooff, D. A. (2007), Bayes Linear Statistics: Theory and Methods, Wiley.

13.30 Procedure: Branch and bound algorithm

13.30.1 Description and Background

Branch and Bound algorithm is a commonly used technique in several mathematical programming applications es-
pecially in combinatorial problem when a problem is difficult to be solved directly. It is preferred over many other
algorithms because it reduces the amount of search needed to find the optimal solution.

Branch and Bound creates a set of subproblems by dividing the space of current problem into unexplored subspaces
represented as nodes in a dynamically generated search tree, which initially contains the root (the original problem).
Performing one iteration of this procedure is based on three main components: selection of the node to process, bound
calculation, and branching, where branching is the partitioning process at each node of the tree and bounding means
finding lower and upper bounds to construct a proof of optimality without exhaustive research. The algorithm can be
terminated whenever the difference between the upper bound and the lower bound is smaller than the chosen € or if
the set of live nodes is empty, i.e. there is no unexplored parts of the solution space left, and the optimal solution is
then the one recorded as “current best”.

The branch and bound procedure explained here is for finding a maximum entropy design. The computations are
based on the process covariance matrix of a large candidate set of order N x N, stored as a function. Following the
Maximum Entropy Sampling principle, the goal is to find the design of sample size n whose n X n process covariance
matrix has maximum determinant. Since the design is a subset of the candidate set the design covariance matrix will
be a submatrix of the candidate set covariance matrix.

114 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

13.30.2 Inputs

—

Candidate set of IV points

A known covariance matrix (stored as a function) of the candidate points

E the set of all eligible points

F the set of all points forced to be in the design

€ > 0 small chosen number

A counter k =0

An initial design of size Sy of size n

An optimality criterion I = log det C[S] (the version described is for entropy).
General upper and lower bounds: U = Ub(C, F, E,s), L = Lb(C, F, E, s).

R S A S

13.30.3 Outputs

1. Global optimal design for the problem
2. Value of the objective

3. Various counts such as number of branchings made

13.30.4 Procedure

1. Let k stand for the iteration number, Uy, stand for the upper bound at £ th iteration, I, the incumbent, i.e. for
best current value of the target function and L be the set of all unexplored subspaces

2. Remove the problem, tuple, with max Ub from L in order to be explored.
3. Branch the problem according to these conditions
4. Setk=k+1

o If |F|+|E|—1 > s, compute Ub(C, F, E\i, s) andif Ub(C, F, E\i, s) > Uy, where i is any index selected
to be removed from E, then add (C, F, E\ i, s) to L, else if | | + |E| — 1 = s, thenset S = F'|J F'\ ¢ and
compute log det Cov[S], and if log det Cov[S] > I then set I = log det Cov[S] and the current design is
S.

o If |F|+1 < s, compute Ub(C, F | Ji, E\i,s) andif Ub(C, FJi, E\i,s) > Uy, thenadd (C, F, E\ i, s)
to L else if |[F| + 1 < s, then set S = F'|J4 and compute log det S and if log det Cov[S] > T then set
I = logdet S and the current design is .S.
5. Update Uy to be the highest upper bound in L.

6. Repeat steps 3,4,5 while U, — [> €.

13.30.5 Additional Comments, References, and Links

The upper bound used in the algorithm above are based on spectral bounds for determinants: the determinant of a
non-negative definite matrix (eg C'[S]) is less than or equal to the product of the diagonal elements, which is taken as
the upper bound. In this version of the branch and bound the current value of the objective function is taken as the
lower bound.

13.30. Procedure: Branch and bound algorithm 115

Multi-Output GP Emulator Documentation, Release 0.6.0

In principle the same algorithm can easily be applied to other optimal design criteria if a general upper bounding
function can be found. For example for IMSEP (prediction MSE) we want to minimise the objective and need a lower
bound. The maximum eigen-value of the posterior covariance matrix of the unsampled point in the candidate set can
be used, although expensive to compute.

The following is a main reference on branch and bound for maximum entropy sampling.

W. K. Chun, J. Lee, and M. Queyranne. An exact algorithm for maximum entropy sampling. Oper. Res., 43(4):684-
691, 1995

A general reference on combinatorial optimisation which contains useful material on the Branch and Bound algorithm
is:

Handbook of combinatorial optimization. Supplement Vol. B. Edited by Ding-Zhu Du and Panos M. Pardalos.
Springer-Verlag, New York, 2005.

13.31 Procedure: Building a Bayes linear emulator for the core prob-
lem (variance parameters known)

13.31.1 Description and Background

The preparation for building a Bayes linear (BL) emulator for the core problem involves defining the prior mean and
covariance functions, specifying prior expectations and variances for the hyperparameters, creating a design for the
training sample, then running the simulator at the input configurations specified in the design. All of this is described
in the thread for Bayes linear emulation for the core model (7hreadCoreBL). In this case, we consider taking those
various ingredients with specified point values for the variance parameters and creating the BL emulator.

13.31.2 Inputs

* Basis functions, /() for the prior mean function mg(+)

* Prior expectation, variance and covariance specifications for the regression coefficients 3
* Prior expectation for the residual process w(z)

* Prior covariance between the coefficients and the residual process

* Specified correlation form for cs(x, 2')

« Specified values for o2 and §

* Design X comprising points {z1, Z3, ...,z } in the input space

* Output vector F' = (f(z1), f(x2),..., f(x,))T, where f(z;) is the simulator output from input vector z;

13.31.3 Outputs

* Adjusted expectations, variances and covariances for 3
* Adjusted residual process
¢ Adjusted covariance between [and the residual process

These outputs, combined with the form of the mean and covariance functions, define the emulator and allow all
necessary computations for tasks such as prediction of the simulator output, uncertainty analysis or sensitivity analysis.

116 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

13.31.4 Procedure

The procedure of building the Bayes linear emulator is simply the adjustment (as described in the procedure page on
calculating the adjusted expectation and variance (ProcBLAdjust)) of the emulator by the observed simulator outputs.

Adjustment

To adjust our beliefs for 8 and the residual process w(z) we require the following prior specifications:
 E[f], Var[f] - prior expectation and variance for the regression coefficients 3

* E[w(z)], Var[w(z)] - prior expectation and variance for the residual process w(-) at any point z in the input
space

» Cov|w(x),w(a’)] - prior covariance between the residual process w(-) at any pair of points (z, z’)

* Cov[3, w(x)] - prior covariance between the regression coefficients 8 and the residual process w(-) at any point
x

Given the relationship f(z) = h(z)T 8 + w(x), define the following quantities obtained from the prior specifications:

Adjusted expectation and variance for trend coefficients

Define H(X) to be the n x ¢ matrix of basis functions over the design with rows h(z1), h(z2), ..., h(z,), and w(X)
to be the n-vector of emulator trend residuals with elements w(z1), w(z2), . .., w(x,) where x; is the i-th point in the
design X. Then the adjusted expectation and variance for are given by:

Ep[8] = E[B] + Var[8]H (X){H (X)" Var[8]H (X) + Var[w(X)]} ™" x (F — H(X)"E[] - Elw(X)])
Varp[f] = Var[] — (Var[B]H (X)) {H(X)" Var[8]H (X) + Var[w(X)]} " (H (X)" Var[5])

Adjusted expectation and variance for residual process

The adjusted expectation and variance for w(-) at any further input point z, and the adjusted covariance between any
further pair of points (x, 2") are given by:

Erfw(2)]
(

Elw()] 4 Covlw(z), w(X)|{H (X)" Var[8]H (X) + Var[w(X)]} " x (F — H(X)"E[] — E[w(X)])
Varp [w(z)] [)

Var[w(z)] — Covlw(z), w(X)|{H(X)T Var[3|H(X) + Var[w(X)]} ' Cov[w(X), w(z)]
Cov{w(z), w(z")] — Covlw(z), w(X)]{H(X)T Var[8]H(X) + Var[w(X)]} " *Cov]w(X), w(z")]

Covp|w(z),w(x")]

Adjusted covariance between trend coefficients and residual process

The adjusted covariance between the trend coefficients and the residual process w(-) at any further input point z is
given by:

Covp[B, w(x)] = Cov[B, w(x)] — Var[f]H(X){H(X)" Var[3|H(X) + Var[w(X)]} " Cov[w(X), w(z)]

13.31. Procedure: Building a Bayes linear emulator for the core problem (variance parameters 117
known)

Multi-Output GP Emulator Documentation, Release 0.6.0

13.32 Procedure: Empirical construction of a Bayes linear emulator
for the core problem using only simulator runs

13.32.1 Description and Background

Ordinarily, when constructing Bayes linear emulators we rely on prior information to direct the choice of emulator
structure and we combine prior beliefs about the emulator parameters with model evaluations to generate our emulator
following the methods of the procedure on building a Bayes linear emulator for the core problem (ProcBuildCoreBL).
However, when the computer model is relatively inexpensive to evaluate and prior information is comparatively lim-
ited, then emulator choice may be made on the basis of a very large collection of simulator evaluations. In particular,
this approach is used for the emulation of a fast approximate version of the simulator (see multi-scale emulation).

In this situation, we may make many runs of the simulator, allowing us to develop a preliminary view of the form of the
function, and thereby to make preliminary choices of the basis function collection {h;(z)}, and suggest an informed
prior specification for the random quantities that determine the emulator for the simulator f(z). This analysis is
supported by a diagnostic analysis, for example based on looking for systematic structure in the emulator residuals.

With such a large number of evaluations of the model, the emulator’s global trend can be identified and well-estimated
from the data alone without application of Bayes. For a Bayesian treatment at this stage, our prior judgements would
be dominated by the large number of model evaluations so typically we use standard model-fitting techniques.

As we are assuming that we have no substantial prior information about the emulators, then we would typically
consider evaluating the computer model over a space-filling design over the input space to obtain good coverage and
to learn about global variation in f(x). We assume we start this procedure with a large design (generated by methods
such as those discussed in the alternatives page on training sample design for the core problem (AltCoreDesign)), and
the corresponding simulator evaluations at each of these input parameter combinations.

13.32.2 Inputs

* Design D over the input space comprising the input points {x1,Z2, ..., 2y}

* Output vector f(D) = (f(x1), f(z2),..., f(zs))T, where f(z;) is the simulator output corresponding to input
vector x; in D

* A collection of potential basis functions, A (-), for the prior mean function m(-)

13.32.3 Outputs

* A collection of appropriate basis functions for the emulator mean function
 Expectation vector and variance/covariance matrix for regression coefficients 3

* Adjusted residual process and specification of covariance function hyperparameters (o2, §)

13.32.4 Procedure

The general process for the empirical construction of an emulator proceeds in the following four stages:
1. Determine the active inputs to the emulator
2. Determine an appropriate subset of basis functions
3. Estimate emulator regression coefficients /3

4. Estimate residual process hyperparameters (02, §)

118 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

Determine active inputs

If we have chosen to work with active inputs in the means function, then the first step in constructing the emulator is
to identify the subset of inputs, x 4, which drive the majority of global variation in f(x). For this stage, we require a
set of possible basis functions (see the alternatives page on basis functions for the emulator mean (AltBasisFunctions)
for details.) Given this set of possible regressors and the ample supply of computer evaluations, we can determine the
important inputs and model effects by methods such as stepwise fitting.

There are many possible approaches for empirically determining active variables. The process of identifying active
variable is known as screening. Typically, these methods take the form of model selection and model search problems.
A simple such approach using backward stepwise regression would be:

1. Fit the emulator mean function using all possible basis functions - this is now the ‘current’ model

2. For each input in the current model, remove all terms involving that input variable and re-fit the mean function
3. Compare each of these sub-models with the current model using an appropriate criterion

4. The most favourable sub-model now becomes the current model

5. Iterate until an appropriate stopping criterion is satisfied

When the input space is very high-dimensional, a backward stepwise approach may not be viable due to the large
number of possible terms in the initial mean function. In these cases, forward selection approaches would be more
appropriate beginning with a simple constant as the initial mean function and adding terms in active variables at each
stage rather than removing them. Given a very large collection of potential inputs, where possible, it is helpful to start
the stepwise search with a sub-collection of input suggested by expert knowledge of the physical processes. Other
approaches to screening are discussed in the topic thread on screening (7hreadTopicScreening).

Determine regression basis functions

The procedure for determining an appropriate collection of regression basis functions is closely related to the problem
of active input identification. Again, this is a model selection problem where we now have a reduced set of possible
basis functions, all of which now only involve the active inputs. We apply the same methods as above, only this time
removing or adding single regression terms in order to arrive at an appropriate and parsimonious representation for the
simulator output.

Estimate emulator regression coefficients

The next stage is to quantify beliefs about the emulator coefficients 5. We obtain values for these prior quantities
by fitting the mean function that we have determined in the previous stages to the observed simulator runs to obtain
estimates and associated uncertainty statements about the coefficients .

There are a variety of ways in which we could fit the mean function to obtain the estimates /3’ If we lack any
insight into the nature of the correlation structure of the residual process and our design points are well-separated
then we could fit the regression model using ordinary least squares (OLS). Alternatively, if we have information about
the correlation function and its parameter values then more appropriate estimates could be obtained by using this
information and fitting by generalised least squares (GLS). We might use an iterative approach to estimate both the
regression coefficients and the correlation function hyperparameters.

The value of E[3] is then taken to be the estimate 3 from the fitting of the regression model and Var[] is taken to be
the variance of the corresponding estimates. With sufficient evaluations in an approximately orthogonal design, the
estimation error here is negligible.

13.32. Procedure: Empirical construction of a Bayes linear emulator for the core problem using119
only simulator runs

http://en.wikipedia.org/wiki/Model_selection
http://en.wikipedia.org/wiki/Stepwise_regression
http://en.wikipedia.org/wiki/Ordinary_Least_Squares
http://en.wikipedia.org/wiki/Generalized_Least_Squares

Multi-Output GP Emulator Documentation, Release 0.6.0

13.32.5 Estimate residual process hyperparameters

The final stage is to make assessments for the values of the covariance function hyperparameters (o2, §) in our covari-
ance specifications for the residual process w(z).

Typically an estimate for o2 is obtained from fitting the regression model in the form of the residual mean square
&2. Estimating correlation function hyperparameters for the emulator residuals can be a more complex task, which
is discussed in the alternatives page on estimators of correlation hyperparameters (AltEstimateDelta). A common
empirical approach is variogram fitting.

Validation and post-emulation tasks

Given the emulator, we can perform similar diagnostics, validation, and post-emulation tasks as described in the thread
for Bayes linear emulation for the core model (7hreadCoreBL).

References

Craig, P. S., Goldstein, M., Seheult, A. H., and Smith, J. A. (1998), “Constructing partial prior specifications for
models of complex physical systems,” Applied Statistics, 47, 37-53.

13.33 Procedure: Build Gaussian process emulator for the core prob-
lem

13.33.1 Description and Background

The preparation for building a Gaussian process (GP) emulator for the core problem involves defining the prior mean
and covariance functions, identifying prior distributions for hyperparameters, creating a design for the training sample,
then running the simulator at the input configurations specified in the design. All of this is described in the thread
for the analysis of the core model using Gaussian process methods (7hreadCoreGP). The procedure here is for taking
those various ingredients and creating the GP emulator.

13.33.2 Inputs

* GP prior mean function m(-) depending on hyperparameters 3

* GP prior correlation function ¢(+, -) depending on hyperparameters ¢

e Prior distribution 7(-, -, -) for 3,02 and &, where o is the process variance hyperparameter
* Design D comprising points {21, Za, . .., 2, } in the input space

* Output vector f(D) = (f(z1), f(x2),..., f(x,))T, where f(z;) is the simulator output from input point z;

13.33.3 Outputs

A GP-based emulator in one of the forms presented in the discussion page on GP emulator forms (DiscGPBasedEm-
ulator).

In the case of general prior mean and correlation functions and general prior distribution:

* A GP posterior conditional distribution with mean function m*(-) and covariance function v*(+,-) conditional
on 6 = {B,0%,5)

120 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

* A posterior representation for ¢

In the case of linear mean function, general correlation function, weak prior information on 3, 02 and general prior
distribution for §:

At process posterior conditional distribution with mean function m™*(-), covariance function v*(-, -) and degrees
of freedom b* conditional on &

* A posterior representation for §

As explained in DiscGPBasedEmulator, the “posterior representation” for the hyperparameters is formally the poste-
rior distribution for those hyperparameters, but for computational purposes this distribution is represented by a sample
of hyperparameter values. In either case, the outputs define the emulator and allow all necessary computations for
tasks such as prediction of the simulator output, uncertainty analysis or sensitivity analysis.

13.33.4 Procedure

General case

Define the following arrays, according to the conventions set out in the notation page (MetaNotation).
e = f(D)—m(D),ann X 1 vector;

A =¢(D, D), ann x n matrix;

t(x) = ¢(D, z), an n x 1 vector function of .

Then, conditional on # and the training sample, the simulator output f(x) is a GP with posterior mean function
m*(z) = m(zx) + t(x)TA e
and posterior covariance function
v*(x,2') = o?{c(x,2’) — t(x)T A7 (2}

This is the first part of the emulator as discussed in DiscGPBasedEmulator. The emulator is completed by a second
part formally comprising the posterior distribution of 8, which has density given by

71'*(,6’,02,5) o W(6,02,5) X ((72)_n/2\z4|_1/2 X eXp{—eTA_le/(ZJQ)},

where the symbol denotes proportionality as usual in Bayesian statistics. In order to compute the emulator predic-
tions and other tasks, the posterior representation of 6 includes a sample from this posterior distribution. The standard
method for obtaining this is Markov chain Monte Carlo (MCMC). For this general case, the form of the posterior
distribution depends very much on the forms of prior mean and correlation functions and the prior distribution, so no
general advice can be given. The References section below lists some useful texts on MCMC.

Linear mean and weak prior case

Suppose now that the mean function has the linear form m(z) = h(z)T 3, where h(-) is a vector of g known basis
Jfunctions of the inputs and 3 is a ¢ X 1 column vector of hyperparameters. Suppose also that the prior distribution
has the form 7(3,02,8) oc 0~ 2ms(6), i.e. that we have weak prior information on 3 and o and an arbitrary prior
distribution 7s(-) for 4.

Define A and ¢(-) as in the previous case. In addition, define the n x ¢ matrix

H = [h(z1), h(z2), . .., h(zn)]",

13.33. Procedure: Build Gaussian process emulator for the core problem 121

Multi-Output GP Emulator Documentation, Release 0.6.0

or in a more compact notation as H = h(D™)T, the vector
B=(H"A'H)" ' HTA'f(D),
and the scalar
5= (n—q—2) " {(D)T{A7 AT H (HTA) HTATY) (D),
which can also be written as

5% =(n—q—2)""(f(D) - HB)" AT (f(D) — HP).

Then, conditional on § and the training sample, the simulator output f(x) is a t process with b* = n — ¢ degrees of
freedom, posterior mean function

-~

m*(z) = h(x) B+ t(x)T A7 (f(D) — HB)
and posterior covariance function
vt (a,2) = 2 {c(z, ') — t(x)TAT @) + (h(z)T — t(2)TATH) (HTA7H) ™ (h(@)T —t(2/)TA H) '}

This is the first part of the emulator as discussed in DiscGPBasedEmulator. The emulator is formally completed by a
second part comprising the posterior distribution of §, which has density given by

75 (8) o ws(0) x (62)~(=D/2| ATV HT AT H |72,

In order to derive the sample representation of this posterior distribution for the second part of the emulator, three
approaches can be considered.

1. A common approximation is simply to fix § at a single value estimated from the posterior distribution. The usual
choice is the posterior mode, which can be found as the value of § for which 7*(§) is maximised. The discussion
page on finding the posterior mode of delta (DiscPostModeDelta), presents some details of this procedure. See
also the alternatives page on estimators of correlation hyperparameters (AltEstimateDelta) for a discussion of
alternative estimators.

2. Another approach is to formally account for the uncertainty about the true value of §, by sampling the poste-
rior distribution of the correlation lengths and performing a Monte Carlo integration. This is described in the
procedure page ProcMCMCDeltaCoreGP. A reference on MCMC algorithms can be found below.

3. An intermediate approach first approximates the posterior distribution by a multivariate lognormal distribution
and then uses a sample from this distribution. See also the procedure on multivariate lognormal approximation
for correlation hyperparameters (ProcApproxDeltaPosterior).

Each of these approaches results in a set of values (or just a single value in the case of the first approach) of §, which
allow the emulator predictions and other required inferences to be computed.

Although it represents an approximation that ignores the uncertainty in J, approach 1 has been widely used. It has
often been suggested that, although uncertainty in these correlation hyperparameters can be substantial, taking proper
account of that uncertainty through approach 2 does not lead to appreciable differences in the resulting emulator. On
the other hand, although this may be true if a good single estimate for J is used, this is not necessarily easy to find, and
the posterior mode may sometimes be a poor choice. Approach 3 has not been used much, but can be recommended
when there is concern about using just a single § estimate. It is simpler than the full MCMC approach 2, but should
capture the uncertainty in J well.

Approaches 1 and 2 are both used in the GEM-SA software (disclaimer).

13.33.5 Additional Comments

Several computational issues can arise in implementing this procedure. These are discussed in DiscBuildCoreGP.

122 Chapter 13. Uncertainty Quantification Methods

http://tonyohagan.co.uk/academic/GEM/

Multi-Output GP Emulator Documentation, Release 0.6.0

13.33.6 References

Here are two leading textbooks on MCMC:

 Gilks, W.R., Richardson, S. & Spiegelhalter, D.J. (1996). Markov Chain Monte Carlo in Practice. Chapman &
Hall.

e Gamerman, D. and Lopes, H. F. (2006). Markov Chain Monte Carlo: Stochastic Simulation for Bayesian
Inference. CRC Press.

Although MCMC for the distribution of § has been reported in a number of articles, they have not given any details
for how to do this, assuming instead that the reader is familiar with MCMC techniques.

13.34 Procedure: Build Gaussian process emulator of derivatives

13.34.1 Description and Background

The preparation for building a Gaussian process (GP) emulator of derivatives involves defining the prior mean and
covariance functions, identifying prior distributions for hyperparameters, creating a design for the training sample,
then running the adjoint, or simulator, at the input configurations specified in the design. This is described in the
generic thread on methods to emulate derivatives (ThreadGenericEmulateDerivatives). The procedure here is for
taking those various ingredients and creating the GP emulator.

13.34.2 Additional notation for this page

Derivative information requires further notation than is specified in the Toolkit notation page (MetaNotation). As
in the procedure page on building a GP emulator with derivative information (ProcBuildWithDerivsGP) we use the
following additional notation:

* The tilde symbol () placed over a letter denotes derivative information and function output combined.

¢ We introduce an extra argument to denote a derivative. We define f (z,d) to be the derivative of f(x) with
respect to input d and so d € {0,1,...,p}. When d = 0 we have f(x,0) = f(x). For simplicity, when d = 0
we adopt the shorter notation so we use f(x) rather than f(x,0).

e An input is denoted by a superscript on =, while a subscript on x refers to the point in the input space. For
(k)

example, z; ’ refers to input k at point 7.

13.34.3 Inputs

* GP prior mean function m(-), differentiable and depending on hyperparameters /3
* GP prior correlation function c(+, -), twice differentiable and depending on hyperparameters §
e Prior distribution 7 (-, -,) for 3,02 and § where ¥ is the process variance hyperparameter

* Design, D = {(zk,di)}, where k = {1,...,n} and d;, € {0,1,...,p}. We have x;, which refers to the
location in the design and dj, determines whether at point x; we require function output or a first derivative w.r.t
one of the inputs. Each zy, is not necessarily distinct as we may have a derivative and the function output at point
T or we may require a derivative w.r.t several inputs at point zj. If we do not have any derivative information,
di = 0, Vk and the resulting design is as in the core thread ThreadCoreGP.

« Output vector is f(D) = f(ay,dy) of length 7. If we are not including derivatives in the training data, dj, =
0, Yk and the output vector reduces to f(D) = f(x) as in ThreadCoreGP.

13.34. Procedure: Build Gaussian process emulator of derivatives 123

Multi-Output GP Emulator Documentation, Release 0.6.0

13.34.4 Outputs

A GP-based emulator in one of the forms discussed in the discussion page DiscGPBasedEmulator.
In the case of general prior mean and correlation functions and general prior distribution:

* A GP posterior conditional distribution with mean function /m*(-) and covariance function o*(+, -) conditional
onf = {3,025}

¢ A posterior representation for 6

In the case of linear mean function, general correlation function, weak prior information on 3, 02 and general prior
distribution for 4:

* A1 process posterior conditional distribution with mean function /m*(-), covariance function (-, -) and degrees
of freedom b* conditional on ¢

* A posterior representation for §

As explained in DiscGPBasedEmulator, the “posterior representation” for the hyperparameters is formally the poste-
rior distribution for those hyperparameters, but for computational purposes this distribution is represented by a sample
of hyperparameter values. In either case, the outputs define the emulator and allow all necessary computations for tasks
such as prediction of the partial derivatives of the simulator output w.r.t the inputs, uncertainty analysis or sensitivity
analysis.

13.34.5 Procedure

General case

We define the following arrays (following the conventions set out in MetaNotation where possible).
¢ = f(D) —m(D), an 7 x 1 vector, where (D) = ﬁm(wk).

A = &D, D), an 7 x n matrix, where &(-, -) includes the covariances involving derivatives. The exact form of (-, -)
depends on where derivatives are included. The general expression for this is: &(-,-) = Corr{f(x;,d;), f(z;,d;)}
and we can break it down into three cases:

* Case 1 is for when d; = d; = 0 and as such represents the covariance between 2 points. This is the same as in
ThreadCoreGP and is given by:

Corr{f(;,0), f(z;,0)} = e, z)-

* Case 2 is for when d; # 0 and d; = 0 and as such represents the covariance between a derivative and a point.
This is obtained by differentiating ¢(-, -) w.r.t input d;:

COI‘I‘{‘]E(ajZ,) f(xjv)} - W,for di 7& 0.

* Case 3 is for when d; # 0 and d; # 0 and as such represents the covariance between two derivatives. This is
obtained by differentiating c(-, -) twice: once w.r.t input d; and once w.r.t input d;:

&c(xy, xj)

COI‘I‘{f(l‘“) f(zjv)} = a;EEdZ)axgd])’

for di, dj 75 0.

- Case 3a. If d;,d; # 0 and d; = d; we have a special version of Case 3 which gives:

0?c(z;,z5)

Corr{ f(xs,dy), f(x;,di)} = Wiordi#().
&ri , T

124 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

t(z,d) = &{D,(x,d)}, an 7 x 1 vector function of z. We have d # 0 as here we want to emulate
derivatives. To emulate function output, d = 0 and this is covered in ThreadCoreGP or ThreadVari-
antWithDerivatives if we have derivatives in the training data.

Then, conditional on 6 and the training sample, the output vector f (z,d) is a multivariate GP with posterior mean
function

m*(z,d) = m(z,d) + t(z,d)TA e
and posterior covariance function
T {(wi, i), (w5, d5)} = o> {&H{ (wi, i), (w5, dy)} — E(as, di) T A" (w5, dy)}

This is the first part of the emulator as discussed in DiscGPBasedEmulator. The emulator is completed by a second
part formally comprising the posterior distribution of 8, which has density given by

7(B,0%,0) xx w(B,02,8) x (62) V2 A|7V? x exp{—eT A"1e/(20°)}.

For the output vector f (2,0) = f(x) see the procedure page on building a GP emulator for the core problem
(ProcBuildCoreGP) or the procedure page for building a GP emulator when we have derivatives in the training data
(ProcBuildWithDerivsGP).

Linear mean and weak prior case

Suppose now that the mean function has the linear form m(x) = h(z)T3, where h(-) is a vector of ¢ known basis
functions of the inputs and /3 is a ¢ x 1 column vector of hyperparameters. When d # 0 we therefore have m(z, d) =
h(z,d)"3 = ﬁh(m)Tﬁ. Suppose also that the prior distribution has the form (3, %, §) o o ~27s(d), i.e. that we
have weak prior information on 8 and X and an arbitrary prior distribution 74(-) for ¢.

Define A and #(z) as in the previous case. In addition, define the 72 x ¢ matrix

H = [il'(xh dl)? EERE B(‘rﬁv dﬁ)]Tv

the vector

and the scalar
. ; N1 .
62 =(i—q—2) L f(D)T {A1 AT (HTA*H) HTAl} F(D).

Then, conditional on ¢ and the training sample, the output vector f (z,d) is a t process with b* = 1 — ¢ degrees of
freedom, posterior mean function

m* (e, d) = h(e,d)"B + i(x,d)"A (f(D) - HB)
and posterior covariance function
5 {(i,dy), (x5, dy)} =07 {&{ (w1, i), (w5, dy)} = U(ws, di) T A (5, dy)
~ ~ ~ ~ ~ - \N—1 /. - - \T
+ (h(xi,di)T - t(xi,di)TA_lH) (HTA—1H) (h(xj,dj)T —t(xj,dj)TA—lﬂ) .

This is the first part of the emulator as discussed in DiscGPBasedEmulator. The emulator is formally completed by a
second part comprising the posterior distribution of §, which has density given by

75 (8) o ws(8) x (62) " —D/2| A7V HT AT H |72,

In order to derive the sample representation of this posterior distribution for the second part of the emulator, three
approaches can be considered.

13.34. Procedure: Build Gaussian process emulator of derivatives 125

Multi-Output GP Emulator Documentation, Release 0.6.0

1. Exact computations require a sample from the posterior distribution of §. This can be obtained by MCMC; a
suitable reference can be found below.

2. A common approximation is simply to fix J at a single value estimated from the posterior distribution. The
usual choice is the posterior mode, which can be found as the value of § for which 7*(§) is maximised. See the
alternatives page AltEstimateDelta for a discussion of alternative estimators.

3. An intermediate approach first approximates the posterior distribution by a multivariate lognormal distribution
and then uses a sample from this distribution; this is described in the procedure page ProcApproxDeltaPosterior.

Each of these approaches results in a set of values (or just a single value in the case of the second approach) of 6,
which allow the emulator predictions and other required inferences to be computed.

Although it represents an approximation that ignores the uncertainty in J, approach 2 has been widely used. It has
often been suggested that, although uncertainty in these correlation hyperparameters can be substantial, taking proper
account of that uncertainty through approach 1 does not lead to appreciable differences in the resulting emulator. On
the other hand, although this may be true if a good single estimate for § is used, this is not necessarily easy to find, and
the posterior mode may sometimes be a poor choice. Approach 3 has not been used much, but can be recommended
when there is concern about using just a single § estimate. It is simpler than the full MCMC approach 1, but should
capture the uncertainty in § well.

13.34.6 Additional Comments

We can use this procedure to emulate derivatives whether or not we have derivatives in the training data. Quantities
A, H, f(D),m(D) and therefore &, above are taken from ProcBuildWithDerivsGP as they allow for derivatives in
the training data, in addition to function output. In the case when we build an emulator with function output only,
d = 0 for all the training data and these quantities reduce to the same quantities without the tilde symbol (), as defined
in ProcBuildCoreGP. Then to emulate derivatives in the general case, conditional on # and the training sample, the
output vector f (x,d) is a multivariate GP with posterior mean function

m*(z,d) = m(z,d) +t(x,d)TA e
and posterior covariance function
0 (i, di), (w5, dy)} = o {&{ (@i, i), (w5,)} — B, di) T A", dy))

To emulate derivatives in the case of a linear mean and weak prior, conditional on ¢ and the training sample, the output
vector f(x,d) is a t process with b* = n — ¢ degrees of freedom, posterior mean function

-~

m* (@, d) = h(w,d)" B+ i(z,d)" A (f(D) - HB)
and posterior covariance function
0 {(i, i), (xj,dj)} =0 {&{ (2, di), (5, d;)} — Uxi, di) T A7 (x5, dy)

+ (i d)™ — Fa,)T A H) (BT A7) (Ray.d)" - f(xj,dj)TA_lH)T}.

13.35 Procedure: Build multivariate Gaussian process emulator for
the core problem
13.35.1 Description and Background

The preparation for building a multivariate Gaussian process (GP) emulator for the core problem involves defining
the prior mean and covariance functions, identifying prior distributions for hyperparameters, creating a design for

126 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

the training sample, then running the simulator at the input configurations specified in the design. All of this is
described in the variant thread for analysis of a simulator with multiple outputs using Gaussian Process methods
(ThreadVariantMultipleOutputs). The procedure here is for taking those various ingredients and creating the GP
emulator.

In the case of r outputs, the simulator is a 1 x r row vector function f(-),and so its mean function m(-) is also a
1 x r row vector function, while its covariance function v(+,-) is a 7 X 7 matrix function. The 4, jth element of v(-,)
expresses the covariance between f;(-) and f;(-).

13.35.2 Inputs

* GP prior mean function m(-) depending on hyperparameters 3

* GP prior input-space covariance function v(-, -) depending on hyperparameters w
* Prior distribution 7 (-, -) for 5 and w.

* Design D comprising points {x1, x2, ..., x,} in the input space.

* n X r output matrix f(D).

13.35.3 Outputs

A GP-based emulator in one of the forms presented in the discussion page DiscGPBasedEmulator.
In the case of general prior mean and correlation functions and general prior distribution

* A multivariate GP posterior conditional distribution with mean function m*(-) and covariance function v*(-, -)
conditional on § = {8, w}.

* A posterior representation for 6.

In the case of linear mean function, general covariance function, weak prior information on § and general prior
distribution for w we have:

o A multivariate Gaussian process posterior conditional distribution with mean function m*(-) and covariance
function v* (-, -) conditional on w.

* A posterior representation for w.

As explained in DiscGPBasedEmulator, the “posterior representation” for the hyperparameters is formally the poste-
rior distribution for those hyperparameters, but for computational purposes this distribution is represented by a sample
of hyperparameter values. In either case, the outputs define the emulator and allow all necessary computations for
tasks such as prediction of the simulator output, uncertainty analysis or sensitivity analysis.

13.35.4 Procedure

General case

We define the following arrays (following the conventions set out in the Toolkit’s notation page (MetaNotation)).
* ¢e= f(D) —m(D), an n X r matrix;

* V =v(D, D), the rn x rn covariance matrix composed of n x n blocks {V;; : ¢,j = 1, ..., r}, where the k, (th
entry of V;; is the covariance between f;(xy) and f;(z¢);

* u(z) = v(D,z), the rn x r matrix function of x composed of n x 1 blocks {u;;(z) : ¢,7 = 1,...,r}, where the
k is the covariance between f;(xy) and f;(x).

13.35. Procedure: Build multivariate Gaussian process emulator for the core problem 127

Multi-Output GP Emulator Documentation, Release 0.6.0

Then, conditional on 6 and the training sample, the simulator output vector f(z) is a multivariate GP with posterior
mean function

m*(x) = m(x) + vec(e) TV u(z)
and posterior covariance function
v*(z,2') = v(x, ') — ulz) "V u(z).

This is the first part of the emulator as discussed in DiscGPBasedEmulator. The emulator is completed by a second
part formally comprising the posterior distribution of ¢, which has density given by

(B, w) < 7(B,w) x |[V|72exp {—;Vec(e)TV_lvec(e)}

where the symbol denotes proportionality as usual in Bayesian statistics. In order to compute the emulator predic-
tions and other tasks, the posterior representation of 6 includes a sample from this posterior distribution. The standard
method for doing this is Markov chain Monte Carlo (MCMC). For this general case, the form of the posterior distribu-
tion depends very much on the forms of prior mean and correlation functions and the prior distribution, so no general
advice can be given. The References section below lists some useful texts on MCMC.

Linear mean and weak prior case

Suppose now that the mean function has the linear form m(x) = h(z)T3, where h(-) is a vector of ¢ known basis
functions of the inputs and 3 is a ¢ X r matrix of hyperparameters. Suppose also that the prior distribution has the
form 7(8, w) o m,(w), i.e. that we have weak prior information on S and an arbitrary prior distribution 7, (-) for w.

Define V and u(z) as in the previous case. In addition, define the n X ¢ matrix
H=h(D)",
the ¢ x r matrix B = such that
vee(B) = (Ih @ HOW NIy @ H)) ™ (I ® HT)V ™ vec(f(D)),
and the r X gr matrix
R(z) = Iy @ h(z)" —u(z)"V (I, ® H).

Then, conditional on w and the training sample, the simulator output vector f(x) is a multivariate GP with posterior
mean function

-~

m*(2) = hi2)" B + u(2) "V~ vee(f(D) — HP)
and posterior covariance function
v*(z,2') = v(z,2') —u(z) "V u(@) + R(z) (I @ H)V I, H))71 R(z")".

This is the first part of the emulator as discussed in DiscGPBasedEmulator. The emulator is formally completed by a
second part comprising the posterior distribution of w, which has density given by

piL) o) x VI 0 YV (0 B2 exp { el (D) — HBYTV el £(D) ~) }.

In order to compute the emulator predictions and other tasks, the posterior representation of ¢ includes a sample from
this posterior distribution. The standard method for doing this is Markov chain Monte Carlo (MCMC). For this general
case, the form of the posterior distribution depends very much on the forms of prior mean and correlation functions
and the prior distribution, so no general advice can be given. The References section below lists some useful texts on
MCMC.

128 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

Choice of covariance function

The procedures above are for a general multivariate covariance function v(-, -). As such, the emulators are conditional
on the choice of covariance function v(-,-) and its associated hyperparameters w. In order to use the emulator, a
structure for v(-, -) must be chosen that ensures the covariance matrix v(D, D) is positive semi-definite for any design
D. The options for this structure are found in the alternatives page AltMultivariate CovarianceStructures.

The simplest option is the separable structure. In many cases the separable structure is adequate, and leads to several
simplifications in the above mathematics. The result is an easily built and workable multi-output emulator. The
aforementioned mathematical simplifications, and the procedure for completing the separable multi-output emulator,
are in the procedure page ProcBuildMultiOutputGPSep.

More complex, nonseparable structures are available and can provide greater flexibility than the separable structure,
but at the cost of producing emulators that are harder to build. Options for nonseparable covariance functions are
discussed in AltMultivariate CovarianceStructures.

13.35.5 Additional Comments

Several computational issues can arise in implementing this procedure. These are discussed in DiscBuildCoreGP.

13.35.6 References

Here are two leading textbooks on MCMC:

 Gilks, W.R., Richardson, S. & Spiegelhalter, D.J. (1996). Markov Chain Monte Carlo in Practice. Chapman &
Hall.

e Gamerman, D. and Lopes, H. F. (2006). Markov Chain Monte Carlo: Stochastic Simulation for Bayesian
Inference. CRC Press.

Although MCMC for the distribution of ¢ has been reported in a number of articles, they have not given any details
for how to do this, assuming instead that the reader is familiar with MCMC techniques.

13.36 Procedure: Complete the multivariate Gaussian process emu-
lator with a separable covariance function

13.36.1 Description and Background

The first steps in building a multivariate Gaussian process emulator for a simulator with r outputs are described in
ProcBuildMultiOutputGP. We assume here that a linear mean function m(z) = h(z)* 3 with a weak prior 7(3) o< 1
is used in that procedure, so the result is a multivariate Gaussian process emulator that is conditional on the choice
of covariance function v(-, -) and its associated hyperparameters w. It is necessary to choose one of the structures for
v(-,) discussed in AltMultivariateCovarianceStructures. The most simple option is a separable structure which leads
to a simpler multivariate emulator than that described in ProcBuildMultiOutputGP. The procedure here is for creating
that simplified multivariate Gaussian process emulator with a separable covariance function.

A separable covariance has the form
’U(',) = EC('v ')7

where X is a :math:° r times r‘ covariance matrix between outputs and c(-, -) is a correlation function between input
points. The hyperparameters for the separable covariance are w = (X, §), where ¢ are the hyperparameters for ¢(-, -).

13.36. Procedure: Complete the multivariate Gaussian process emulator with a separable 129
covariance function

Multi-Output GP Emulator Documentation, Release 0.6.0

The choice of prior for ¥ is discussed in AltMultivariateGPPriors, but here we assume here that 3 has the weak prior
r4+1

(X)) < [Z]7 7.

As discussed in AltMultivariateCovarianceStructures, the assumption of separability imposes a restriction that all the
outputs have the same correlation function c¢(+, -) across the input space. We shall see in the following procedure that
this leads to a simple emulation methodology. The drawback is that the emulator may not perform well if the outputs
represent several different types of physical quantity, since it assumes that all outputs have the same smoothness
properties. If that assumption is too restrictive, then a nonseparable covariance function may be required. Some
options for nonseparable covariance function are described in AltMultivariateCovarianceStructures.

13.36.2 Inputs

e Multivariate GP emulator with a linear mean function that is conditional on the choice of covariance function
v(-,) and its associated hyperparameters w, which is constructed according to the procedure in ProcBuildMul-
tiOutputGP.

* A GP prior input-space correlation function ¢(+, -) depending on hyperparameters §

* A prior distribution 7 (-) for ¢.

13.36.3 Outputs

* A GP-based emulator with a multivariate t-process posterior conditional distribution with mean function m*(-),
covariance function v*(-, -) and degrees of freedom b* conditional on 4.

* A posterior representation for §

As explained in DiscGPBasedEmulator, the “posterior representation” for the hyperparameters is formally the poste-
rior distribution for those hyperparameters, but for computational purposes this distribution is represented by a sample
of hyperparameter values. In either case, the outputs define the emulator and allow all necessary computations for
tasks such as prediction of the simulator output, uncertainty analysis or sensitivity analysis.

13.36.4 Procedure

In addition to the notation defined in ProcBuildMultiOutputGP, we define the following arrays (following the conven-
tions set out in the Toolkit’s notation page MetaNotation).

* A =¢(D,D), the n X n matrix of input-space correlations between all pairs of design points in D;
e t(x) = ¢(D,x), an n X 1 vector function of x.
e R(z) =h(z)T —t(x)TA'H

A consequence of the separable structure for v(-,-) is that the rn x rn covariance matrix V' = v(D, D) has the
Kronecker product representation V' = ¥ ® A, and the rn X r matrix function u(z) = v(D, z) has the Kronecker
product representation u(x) = X ® t(x). As a result the n x r matrix 8 has the simpler form

B=(HTA"'H)" HTA (D).

Then, conditional on ¢ and the training sample, the simulator output vector f(x) is a multivariate t-process with
b* = n — g degrees of freedom, posterior mean function

~

m*(z) = h(z)"5 + t(x) A (f(D) — HB)

and posterior covariance function

vt (z,2') = 5 {c(:c,) = ta)TA (') + R(z) (HT AT H) ™ R(x’)T} ,

130 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

where
S =(n—q) N (f(D) - HB)" A~ (f(D) — HB)
— (n—q)"Lf(D)T {A*l —AH (HT A H) HTA*} F(D).

This is the first part of the emulator as discussed in DiscGPBasedEmulator. The emulator is formally completed by a
second part comprising the posterior distribution of §, which has density given by

T5(6) o ms(6) x |S|" (D2 A7 2| HT AT H| T2,

In order to compute the emulator predictions and other tasks, three approaches can be considered.

1. Exact computations require a sample from the posterior distribution of 4. This can be obtained by MCMC; a
suitable reference can be found below.

2. A common approximation is simply to fix § at a single value estimated from the posterior distribution. The usual
choice is the posterior mode, which can be found as the value of ¢ for which 7} () is maximised. See the page
on alternative estimators of correlation hyperparameters (AltEstimateDelta).

3. An intermediate approach first approximates the posterior distribution by a multivariate lognormal distribution
and then uses a sample from this distribution, as described in the procedure page ProcApproxDeltaPosterior.

Each of these approaches results in a set of values (or just a single value in the case of the second approach) of 6,
which allow the emulator predictions and other required inferences to be computed.

Although it represents an approximation that ignores the uncertainty in §, approach 2 has been widely used. It has
often been suggested that, although uncertainty in these correlation hyperparameters can be substantial, taking proper
account of that uncertainty through approach 1 does not lead to appreciable differences in the resulting emulator. On
the other hand, although this may be true if a good single estimate for § is used, this is not necessarily easy to find, and
the posterior mode may sometimes be a poor choice. Approach 3 has not been used much, but can be recommended
when there is concern about using just a single § estimate. It is simpler than the full MCMC approach 1, but should
capture the uncertainty in § well.

13.36.5 Additional Comments

Several computational issues can arise in implementing this procedure. These are discussed in DiscBuildCoreGP.

13.36.6 References

Here are two leading textbooks on MCMC:

* Gilks, W.R., Richardson, S. & Spiegelhalter, D.J. (1996). Markov Chain Monte Carlo in Practice. Chapman &
Hall.

e Gamerman, D. and Lopes, H. F. (2006). Markov Chain Monte Carlo: Stochastic Simulation for Bayesian
Inference. CRC Press.

Although MCMC for the distribution of § has been reported in a number of articles, they have not given any details
for how to do this, assuming instead that the reader is familiar with MCMC techniques.

Details of the linear mean weak prior case can be found in:

Conti, S. and O’Hagan, A. (2009). Bayesian emulation of complex multi-output and dynamic computer models.
Journal of Statistical Planning and Inference. doi: 10.1016/j.jspi.2009.08.006

The multi-output emulator with the linear mean form is a special case of the outer product emulator. The following
reference gives formulae which exploit separable structures in both the mean and covariance functions to achieve
computational efficiency that allows very large (output dimension) simulators to be emulated.

13.36. Procedure: Complete the multivariate Gaussian process emulator with a separable 131
covariance function

http://dx.doi.org/10.1016/j.jspi.2009.08.006

Multi-Output GP Emulator Documentation, Release 0.6.0

J.C. Rougier (2008), Efficient Emulators for Multivariate Deterministic Functions, Journal of Computational and
Graphical Statistics, 17(4), 827-843. doi:10.1198/106186008X384032.

13.37 Procedure: Build Gaussian process emulator with derivative
information

13.37.1 Description and Background

The preparation for building a Gaussian process (GP) emulator with derivative information involves defining the prior
mean and covariance functions, identifying prior distributions for hyperparameters, creating a design for the training
sample, then running the adjoint, or simulator and a method to obtain derivatives, at the input configurations specified
in the design. All of this is described in the variant thread on emulators with derivative information (7hreadVari-
antWithDerivatives). The procedure here is for taking those various ingredients and creating the GP emulator.

13.37.2 Additional notation for this page

Including derivative information requires further notation than is specified in the Toolkit notation page (MetaNotation).
We declare this notation here but it is only applicable to the derivatives thread variant pages.

* The tilde symbol () placed over a letter denotes derivative information and function output combined.

* We introduce an extra argument to denote a derivative. We define f(x,d) to be the derivative of f(z) with
respect to input d and so d € {0,1,...,p}. When d = 0 we have f(x,0) = f(x). For simplicity, when d = 0
we adopt the shorter notation so we use f(z) rather than f(x,0).

* An input is denoted by a superscript on z, while a subscript on z refers to the point in the input space. For
(k)

example, z; ’ refers to input k at point 7.

13.37.3 Inputs

* GP prior mean function m(-), differentiable and depending on hyperparameters (3
* GP prior correlation function ¢(+, -), twice differentiable and depending on hyperparameters &
e Prior distribution (-, -, -) for 3,02 and § where o is the process variance hyperparameter

* We require a design. In the core thread ThreadCoreGP the design, D, is an ordered set of points D =
{x1,29,..., 2}, Where each x is a location in the input space. Here, we need a design which in addition
to specifying the location of the inputs, also determines at which points we require function output and at
which points we require first derivatives. We arrange this information in the design D = {(x,d)}, where
k={1,...,n}and dy € {0,1,...,p}. We have x;, which refers to the location in the design and dj, deter-
mines whether at point x; we require function output or a first derivative w.r.t one of the inputs. Each xj is
not distinct as we may have a derivative and the function output at point z;, or we may require a derivative w.r.t
several inputs at point xj.

« Output vector is f(D) of length 7.

13.37.4 Outputs

A GP-based emulator in one of the forms discussed in DiscGPBasedEmulator.

In the case of general prior mean and correlation functions and general prior distribution:

132 Chapter 13. Uncertainty Quantification Methods

http://pubs.amstat.org/doi/abs/10.1198/106186008X384032

Multi-Output GP Emulator Documentation, Release 0.6.0

* A GP posterior conditional distribution with mean function m*(-) and covariance function v*(+,-) conditional
on 6 = {B3,02,6}. If we want to emulate the derivatives rather than the function output see ProcBuildGPEmu-
lateDerivs.

* A posterior representation for 6

In the case of linear mean function, general correlation function, weak prior information on 3, 0 and general prior
distribution for §:

* At process posterior conditional distribution with mean function m™*(-), covariance function v*(-, -) and degrees
of freedom b* conditional on ¢

* A posterior representation for §

As explained in DiscGPBasedEmulator, the “posterior representation” for the hyperparameters is formally the poste-
rior distribution for those hyperparameters, but for computational purposes this distribution is represented by a sample
of hyperparameter values. In either case, the outputs define the emulator and allow all necessary computations for
tasks such as prediction of the simulator output, uncertainty analysis or sensitivity analysis.

13.37.5 Procedure

General case

We define the following arrays (following the conventions set out in MetaNotation where possible).

¢ = f(D) —m(D), an 7 x 1 vector, where 7 (x,0) = m(z), and 7 (z, d) = djd)m()ifd # 0.

A = ¢&D, D), an i x 72 matrix, where the exact form of &(-, -) depends on where derivatives are included. The general
expression for this is: ¢(.,.) = Corr{ f(z;,d;), f(x;,d;)} and we can break it down into three cases:

* Case 1 is for when d; = d; = 0 and as such represents the covariance between 2 points. This is the same as in
ThreadCoreGP and is given by:

Corr{f(x,0), f(2;,0)} = e(ws,z).
* Case 2 is for when d; # 0 and d; = 0 and as such represents the covariance between a derivative and a point.
This is obtained by differentiating c(-, -) w.r.t input d;:
s s 8 1y by
Core{ o). fa3,0)) = 255 for 0.
e

* Case 3 is for when d; # 0 and d; # 0 and as such represents the covariance between two derivatives. This is
obtained by differentiating c(-, -) twice: once w.r.t input d; and once w.r.t input d;:

0?c(wi, ;)

COI‘I‘{f(l‘“) f(’r_]v)} = 8$Edi)8x§,dj)’

for di, dj 35 0.

— Case 3a. If d;,d; # 0 and d; = d; we have a special version of Case 3 which gives:

. . 2
Corr{f(x;, d;), f(z;,di)} = %,fm d; # 0.
3xi , T)

t(z) = &{D, (x,0)}, an 2 x 1 vector function of 2. We have d = 0 as here we want to emulate function output. To
emulate derivatives, d # 0 and this is covered in the generic thread on emulating derivatives (ThreadGenericEmulat-
eDerivatives).

13.37. Procedure: Build Gaussian process emulator with derivative information 133

Multi-Output GP Emulator Documentation, Release 0.6.0

Then, conditional on # and the training sample, the output vector f (2,0) = f(z) is a multivariate GP with posterior
mean function

m*(z) = m(x) 4+ t(z)TA e
and posterior covariance function
v* (24, 1;) = o2 {c(zi, ;) — tHx) AT E(x5)}

This is the first part of the emulator as discussed in DiscGPBasedEmulator. The emulator is completed by a second
part formally comprising the posterior distribution of 8, which has density given by

T (8,0%,6) o (B,0°,68) x (%) TM2A| T x exp{—eTA7E/(20)}.
For the output vector f (z,d) with d # 0 see the procedure page on building an emulator of derivatives (ProcBuildEm-

ulateDerivsGP).

Linear mean and weak prior case

Suppose now that the mean function has the linear form m(z) = h(z)T 3, where h(-) is a vector of g known basis
functions of the inputs and 3 is a ¢ x 1 column vector of hyperparameters. When d # 0 we therefore have 1 (z, d) =
h(z,d)" 8 = 59h(x)" 3. Suppose also that the prior distribution has the form 7 (83, 0%, 8) oc o~ ?ms(d), i.e. that we
have weak prior information on 3 and ¢ and an arbitrary prior distribution 7(-) for &.

Define A and 7 (z) as in the previous case. In addition, define the 72 X ¢ matrix

H = (a1, dy), ..., bz, ds)]",

the vector

and the scalar

-1

52 = (= q—2)"Lf(D)T {A1 A (ATAR) HT!H} J(D).

Then, conditional on § and the training sample, the output vector f (x,0) = f(x)is atprocess with b* = i — g degrees
of freedom, posterior mean function

and posterior covariance function
- - - ~ S P e L . . AT
v (@i, z) = 6% {e(ws, ;) — Hx) TA Y (z,) + (h(xi)T - t(xi)TA‘lH) (HTA‘1H> (h(ij - t(xj)TA_1H> 1.

This is the first part of the emulator as discussed in DiscGPBasedEmulator. The emulator is formally completed by a
second part comprising the posterior distribution of ¢, which has density given by

72(0) ox ms(8) x (6%)~D/2| A7V AT AT |2,

In order to derive the sample representation of this posterior distribution for the second part of the emulator, three
approaches can be considered.

1. Exact computations require a sample from the posterior distribution of 4. This can be obtained by MCMC; a
suitable reference can be found below.

134 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

2. A common approximation is simply to fix § at a single value estimated from the posterior distribution. The
usual choice is the posterior mode, which can be found as the value of § for which 7* () is maximised. See the
alternatives page on estimators of correlation hyperparameters (AltEstimateDelta).

3. An intermediate approach first approximates the posterior distribution by a multivariate lognormal distribution
and then uses a sample from this distribution, as described in the procedure page ProcApproxDeltaPosterior.

Each of these approaches results in a set of values (or just a single value in the case of the second approach) of 4,
which allow the emulator predictions and other required inferences to be computed.

Although it represents an approximation that ignores the uncertainty in 9, approach 2 has been widely used. It has
often been suggested that, although uncertainty in these correlation hyperparameters can be substantial, taking proper
account of that uncertainty through approach 1 does not lead to appreciable differences in the resulting emulator. On
the other hand, although this may be true if a good single estimate for ¢ is used, this is not necessarily easy to find, and
the posterior mode may sometimes be a poor choice. Approach 3 has not been used much, but can be recommended
when there is concern about using just a single 0 estimate. It is simpler than the full MCMC approach 1, but should
capture the uncertainty in § well.

13.37.6 References

Morris, M. D., Mitchell, T. J. and Ylvisaker, D. (1993). Bayesian design and analysis of computer experiments: Use
of derivatives in surface prediction. Technometrics, 35, 243-255.

13.38 Procedure: Data Pre-Processing and Standardisation

In this page we describe the process of pre-processing data, which might often be undertaken prior to for example
screening or more general emulation. This can take several forms. A very common pre-processing step is centring,
which produces data with zero mean. If the range of variation is known a priori a simple linear transformation to the
range [0,1] is often used. It might also be useful to standardise (sometimes called normalise) data to produce zero
mean and unit variance. For multivariate data it can be useful to whiten (or sphere) the data to have zero mean and
identity covariance, which for one variable is the same as standardisation. The linear transformation and normalisation
processes are not equivalent since the latter is a probabilistic transformation using the first two moments of the observed
data.

13.38.1 Centring
It is often useful to remove the mean from a data set. In general the mean, E[z], will not be known and thus must
be estimated and the centered data is given by: ' = = — E[z]. Centring will often be used if a zero mean Gaussian

process is being used to build the emulator, although in general it would be better to include an explicit mean function
in the emulator.

13.38.2 Linear transformations

To linearly transform the data region = € [c, d] to another domain z’ € [a, b]:

v=5=0b-a)+ta

c

In experimental design the convention is for [a, b] = [0, 1].

13.38. Procedure: Data Pre-Processing and Standardisation 135

Multi-Output GP Emulator Documentation, Release 0.6.0

13.38.3 Standardising

If the domain of the design region is not known, samples from the design space can be used to rescale the data to have
0 mean, unit variance by using the process of standardisation. If on the other hand the design domain is known we can
employ a linear rescaling.

The process involves estimating the mean p = E[z] and standard deviation of the data o and applying the transforma-
tion ' = *=£. It is possible to standardise each input/output separately which rescales the data, but does not render
the outputs uncorrelated. This might be useful in situations where correlations or covariances are difficult to estimate,
or where these relationships want to be preserved, so that individual inputs can still be distinguished.

13.38.4 Sphering/Whitening

For multivariate inputs and outputs it is possible to whiten the data, that is convert the data to zero mean, identity
variance. This process is a linear transformation of the data and is described in more detail, including a discussion of
how to treat a mean function in the procedure page ProcOutputsPrincipal Components, and would typically be applied
to outputs rather than inputs.

The data sphering process involves estimating the mean E[z] and variance matrix of the data Var[x], computing the
eigen decomposition PAP” of Var[z] and applying the transformation 2’ = PA~'/2PT(z — E[z]). Alternative
approaches are possible and are discussed in ProcOutputsPrincipal Components.

13.39 Procedure: Iterate the single step emulator using an exact sim-
ulation approach

13.39.1 Description and Background
This page is concerned with task of emulating a dynamic simulator, as set out in the variant thread on dynamic
emulation (ThreadVariantDynamic).

We have an emulator for the single step function wy = f(wi—1,as, ¢), and wish to predict the full time series
wy, ..., wr for a specified initial state variable wy, time series of forcing variables aq,...,ar and simulator pa-
rameters ¢. It is not possible to derive analytically a distribution for wy, ..., wy if f(-) is modelled as a Gaussian

Process, so here we use simulation to sample from the distribution of w1, . . . , wp. We simulate a large number of series

w@, ey wg) fort =1,..., R, and then use the simulated series for making predictions and reporting uncertainty.

13.39.2 Inputs

* An emulator for the single step function w; = f(w;_1, a, ¢), formulated as a GP or 7-process conditional on
hyperparameters, training inputs D = {x1,...,x,} and training outputs f(D).

o Aset {#(V), ... 05} of emulator hyperparameter values.
¢ The initial value of the state variable wy.

* The values of the forcing variables a1, ..., ar.

* The values of the simulator parameters ¢.

* Number of realisations R required.

For notational convenience, we suppose that R < s. For discussion of the choice of R, including the case R > s, see
the discussion page on Monte Carlo estimation (DiscMonteCarlo).

136 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

13.39.3 Outputs

* A set of simulated state variable time series wgi), e ,w(Ti) fortr=1,...,R

13.39.4 Procedure

Note: methods for simulating outputs from Gaussian process emulators are described in the procedure page ProcOut-
putSample.

A single time series wgi), e 7w(Ti) can be generated as follows.

1. Using the emulator with hyperparameters 6(*), sample from the distribution of f (wo, a1, ¢) to obtain wgi). Then
iterate the following steps 2-4 fort =1,...,7 — 1.

2. Construct a new training dataset of inputs (D, DY), where ~ D(!) =

{(wo, a1, ®), (wgi), a2, @), ..., (wg?l, at, @)} and outputs {f(D), w%i), ce wt(i) +. To clarify, training
inputs and outputs are paired as follows:

T f(z1)

Ty f (zn)
Training inputs: (U’Q7 ai, ¢) Training outputs: w?)
(U)Y), az, ¢) wél)
(w;y. ar.9) wf’

3. Re-build the single step emulator given the new training data defined in step 2. It may be necessary to thin
the new training data first before building the emulator. The set of inputs (D, D(**)) may contain points close
together, which can make inversion of A = c{(D, D) (D, D)} difficult. See discussion in Additional
Comments.

4. Sample from the distribution of f (wt(i)7 a1, @) to obtain w§21

The whole process is repeated to obtain R simulated time series wgi), e ,w(Ti) for i = 1,...R. The sample

w%i), e 7w(Ti) for i = 1,... R is a sample from the joint distribution of w;,...,wr given the emulator training
data and wo, a1, . .., ar, ¢.

13.39.5 Additional Comments

As commented in step 3, computational difficulties can arise if the training set of inputs (D, D(%*)) contains inputs

that are too close together. This is likely to occur, as (wt(fgl, at42) is likely to be close to (wt(i), at+1). This is problem

is not unique to the use of dynamic emulators, and is discussed in the page on computational issues in building a GP
emulator (DiscBuildCoreGP). A strategy that has been used with some success for this procedure is to consider the
emulator variance of f(wéi), aty1,¢) given training inputs (D, D(**) and outputs { f(D), wgi), e ,wt(i)}, and only
add the new training input (wgi), at+1, ¢) and associated output to the training data at iteration ¢ + 1 if the variance of
f (wii), a+1, @) is sufficiently large. If the variance is very small, so that the emulator already ‘knows’ the value of

f (wf@, at+1, ®), then adding this point to the training data will little effect on the distribution of f(-).

13.39. Procedure: Iterate the single step emulator using an exact simulation approach 137

Multi-Output GP Emulator Documentation, Release 0.6.0

13.40 Procedure: Exchange Algorithm

13.40.1 Description and Background

The exchange algorithm has been used and modified by several authors to construct a D-optimal and other types of
design. Fedorov (1972), Mitchell and Miller (1970), Wynn (1970) , Mitchell (1974) and Atkinson and Donev (1989)
study versions of this algorithm. The main idea of all versions is start with an initial feasible design and then greedily
modify the design by exchange until a satisfactory design is obtained. The following steps are the general steps for an
exchange algorithm.

13.40.2 Inputs

1. A large candidate set, such as a full factorial design (scaled integer grid) or a spacefilling design.
2. A initial design chosen, at random, or preferably, a space filling design.

3. An objective function M, which is based on an optimal design criterion.

13.40.3 Outputs

1. The optimal or near optimal design D = {x1,x2, -,z }.

2. The value of the target function at the obtained design

13.40.4 Procedure

1. Start with the initial n point design.
2. Compute the target function M.

3. General step. Find a set of points of size k from the current design and replace with another set of k& points
chosen from the candidate set. If the value of M, after this exchange, is improved, keep the new design and
update M. The set of points removed from the current design can be put back in the candidate set.

4. Repeat till the stopping rule applies. It may be that after many attempts at a good exchange there is no improve-
ment or only a small improvement in the design. As for global optimisation algorithms it is usual to plot the
value of the objective function against the number of improving exchanges, or simply the number of exchanges.

13.40.5 Additional Comments, References, and Links

1. Note that the algorithm will need an updating rule for the objective function which is preferable fast to compute.
There is in principle no restriction on the objective function.

2. There are are many variations. One version is to first add k& optimally and sequentially to obtain a design with
n + k points and then remove k optimally and sequentially. Such operation is called an excursion. The choice
of the test points outside the current design at step 3 (above) may be computational slow in which case a fast
strategy is to choose them at random. The same idea can be applied when we use an excursion method, at least
for the forward part of the excursion.

3. The method can be used in Bayesian or classical optimal design.

A.C. Atkinson and A.N. Donev. The construction of exact D-optimal designs with application to blocking response
surface designs. Biometrika, 76, 515-526, 1989.

H.P. Wynn. The sequential generation of D-optimal experimental designs, Ann. Math. Stat., 41, 1644-1655, 1970.

138 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

N. K. Nguyen and A.J. Miller, A review of exchange algorithms for constructing descrete D-optimal designs, J. of
Computational Statistics & Data Analysis 14, 489-498, 1992.

T.J. Mitchell,An algorithm for the construction of D-optimal designs, Technometrics, 20, 203-210, 1974.

T.J. Mitchell, and A. J. Miller, Use of ‘design repair’ to construct designs for special linear models, Math. Div. Ann.
Progr. Rept.,130-131, 1970.

V. Fedorov. Theory of Optimal Experiments. Academic Press, New York ,1972.

13.41 Procedure: Explore the full simulator design region to identify
a suitable single step function design region

13.41.1 Description and Background

This page is concerned with task of emulating a dynamic simulator, as set out in the variant thread on dynamic
emulation (ThreadVariantDynamic).

We have an emulator for the single step function wy = f(w¢_1, at, ¢) given an initial assessment of the input region of
interest Xg;ng1¢, and some training data. However, the ‘correct’ region Xy, 41 depends on the input region of interest
Xy for the full simulator, and the single step function f(-). Here, we use simulation to make an improved assessment
of Xsingle given Xy, and an emulator for f(.).

13.41.2 Inputs

* An emulator for the single step function w; = f(w;_1, as, @), formulated as a GP or i-process conditional on
hyperparameters, training inputs D and training outputs (D).

« Aset {#(M), ... ()} of emulator hyperparameter values.

* The input region of interest Xy, for the full simulator.

13.41.3 Outputs

* A set of N simulated joint time series {(w((f), agi))7 ce (w(Til17 ag))} fori=1,...,N.

13.41.4 Procedure

1. Choose a set of design points {z]"" 27" from Xpyy, with 2" = (wl?,al” ... al?, ™). Both N
and the design points can be chosen following the principles in the alternatives page on training sample design
(AltCoreDesign), but see additional comments at the end. Then forz =1,..., N:

2. For x{ “and () | generate one random time series wiz), cee wg) using the simulation method given in the

procedure page ProcExactlterateSingleStepEmulator (use R = 1 within this procedure). Note that we have

assumed IV < s here. If it is not possible to increase s and we need N > s, then we suggest cycling round the

set {6 ... 0()} for each iteration i.

geeey

Full

i

3. Organise the forcing inputs from z and simulated state variables into a joint time series (wt(i_)l, agi)) for

t=1,...,T.

13.41. Procedure: Explore the full simulator design region to identify a suitable single step 139
function design region

Multi-Output GP Emulator Documentation, Release 0.6.0

13.41.5 Additional Comments

Since generating a single time series wgi), ey w(Ti) should be a relatively quick procedure, we can use a larger value of

N than might normally be considered in A/tCoreDesign. The main aim here is to establish the boundaries of X;y, e,
and so we should check that any such assessment is stable for increasing values of N.

13.42 Procedure: Fourier Expansion

13.42.1 Description and Background
This procedure is used to find the eigenvalues and the eigenfunctions of the covariance kernel when the analytical

solution is not available. The orthonormal basis {6;} is used to solve the problem. This procedure uses Fourier basis
functions as the set of orthonormal basis functions.

In general, the eigenfunction ¢;(t) is written as
M
¢ilt) = dixbi(t) = 0(t)" D; = D 6(t),
k=1
where {6;(t)} is the set of orthonormal basis functions and {d;;, } is the set of unknown coefficients for the expansion.

13.42.2 Inputs

1. The covariance function, see AltCorrelationFunction, and estimates of its parameters.
2. p, the number of eigenvalues and eigenfunctions required to truncate the Karhunen Loeve Expansion at.

3. A set of M adequate basis functions, where M is chosen to be odd. The basis functions are written as

01(t) =1,
02(t) = cos(27t),
05(t) = sin(27t),
02;(t) = cos(2mit),
1
921‘4_1 (t) = sin(27m't),i = 1, 2, ce .

2

13.42.3 Output

1. The set of eigenvalues {\;},i=1---p.
2. The matrix of unknown coefficients, D.

3. An approximated covariance kernel; R(s,t) = Y0 Nigi(s)5(t) = ¢(s)T Ag(t) = 0(s)T DTADO(t).

13.42.4 Procedure

1. Replace ¢;(s) in the Fredholm equation fol R(s,t)¢i(s)ds = Xigp;(t) with DF6(t), then we have
DT [R(s,t)8(s)ds = DT A6(t).

2. Multiply both sides of DT [} R(s,)8(s)ds = DT \6(t) by 8(t).

140 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

3. Integrate both sides of DT fol R(s,)0(s)0(t)Tds = DI \;0(t)0(t)T with respect to .

4. Define A = fol fol R(s,t)0(s)0(t)dsdt, B = fol 0(t)07T (t)dt where A is a symmetric positive definite matrix
and B is a diagonal positive matrix.

e

Matrix implemenation. Write the integration in (4) as Dpx prAnvix v = ApxpDBarx v which is equivalent to
ADT = BDTA.

Express B as B2 B3,

Express the form in (5) as ADT = B2 Bz DTA.

Multilpy both sides of (7) by B~ 2, so that B-2 AB~2 B2 DT = B~2DTA.
Assume E = B~2 D7 then B-2AB"2E = EA.

10. Solve the eigen-problem of B :AB *E = EA.

11. Compute D using D = ETB~ 3.

o »® =N

13.42.5 Additional Comments, References, and Links

For the spatial case of dimension d, the procedure is repeated d times, and the number of eigenvalues, similarly the
number of eigenfunctions, is equal to p?.

13.43 Procedure: Haar wavelet expansion

This procedure is used to find the eigenvalues and the eigenfunctions of the covariance kernel when the analytical
solution is not available. The othonoromal basis function {1);} is used to solve the problem. This procedure uses Haar
wavelet basis functions as the set of orthonormal basis functions.

The eigenfunction ¢, (t) is expressed as a linear combination of Haar orthonormal basis functions

M
¢i(t) = Z dixthr(t) = 0(t)" D; = D] (t).
=1

The Haar wavelet, the simplest wavelet basis function, is defined as

1 0<az<j
Yx)=¢ -1 i<a<l
0 otherwise

13.43.1 Inputs

1. The covariance function , see AlrCorrelationFunction, and the estimates of its parameters.
2. p the number of eigenvalues and eigenfunctions required to truncate the Karhunen Loeve Expansion at.

3. M = 2™ orthogonal basis functions on [0, 1] constructed in the following way

P =1
i = Vi i(x)
i=2 4+ k41

j=0,1,---,n—1
k=01,---,29 —1

13.43. Procedure: Haar wavelet expansion 141

Multi-Output GP Emulator Documentation, Release 0.6.0

where
1 k277 <o < 27771 4 k277
Yx)=4 —1 2797 4 k279 <p <2794 k277
0 otherwise

13.43.2 Output

1. The eigenvalues \; ,7 =1---p.
2. The matrix of unknown coefficients D.

3. An approximated covariance function; R(s,t) = ¥(s)T DTADW(t).

13.43.3 Procedure

1. Write the eigenfunction as ¢;(t) = 22/1:1 dixpp(t) = UT@#)D; so that, R(s,t) =
et Loy Gt (8)8n () = w<s>TAw<t>.

2. Choose M time points such that ¢; = 2M , 1 <i < M.

3. Compute the covariance function C for those M points.

4. Apply the 2D wavelet transform (discrete wavelet transform) on C' to obtain the matrix A.

5. Substitute R(s,t) = W(s)T AY(t) in \;¢;(¢ fo (s,t)¢;i(s), then we have \; W7 (¢)D; = T (t)AHD;.

6. Define H as a diagonal matrix with diagonal elements hy; = 1, hii =279i{=2+k+1, j=0,1,---,n—1

andk =0,1,---,27 — 1.

~

Define the whole problem as Apx, Dpx v ¥ () avrx1 = Dpsrt Havrsnr Anesenr W (8) arxa-

8. From (7), we have AD = DHA.

9. Multiply both sides of (8) by H 3
10. Express the eigen-problem as ADHz = DH2HzAHz or AD = D.Awhere D = DHz and A = Hz AH=.
11. Solve the eigen-problem in (10), then ®(t) = DW(t) = DH 2 WU (t).

13.43.4 Additional Comments, References, and Links

The application of the Haar wavelet procedure shows a better approximation and faster implementation than the Fourier
procedure given in ProcFourierExpansionForKL. For one dimension implementation shows that 25 = 32 provides very
accurate and quite fast approximations.

13.44 Procedure: Generate a Halton design

13.44.1 Description and Background
A Halton design is one of a number of non-random space-filling designs suitable for defining a set of points in the
simulator input space for creating a training sample.

The n point Halton design in p dimensions is generated by a generator set g = (g1, . . . , gp) of prime numbers. See the
“Additional Comments” below for discussion of the choice of generators.

142 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

13.44.2 Inputs

¢ Number of dimensions p
¢ Number of points desired n

* Set of prime generators g1, ..., gp

13.44.3 Outputs

* Halton design D = {z1,22,...,2Zn}

13.44.4 Procedure

1. Foreachi = 1,2,...,pand j = 1,2,...,n, let a;; be the representation in prime base g; of the number j.
Let n;; be the number of digits used for a;; (i.e. n;; is the logarithm to base g; of j, rounded up to the nearest
integer), and let R;; be the result of reversing the digits of a;; and evaluating this as a number in base g;.

MNij

2. Foreachi=1,2,...,pand j =1,2,...,n,letz;; = R;;/y;

3. Forj =1,2,...,n, the j-th design point is z; = (15, T2j, ..., Tp;)-

For example, if j = 10 and g; = 2, then a;; = 1010, from which we have n;; = 4. Then R;; is the binary number
0101, i.e 5, so that z;; = 5/2* = 0.3125.

13.44.5 Additional Comments

A potential problem with Halton designs is the difficulty in finding suitable generators. One suggestion is to let g; be
the ¢-th prime, but this may not work well when p is large.

13.44.6 References

The following is a link to the repository for Matlab code for the Halton sequence in up to 11 dimensions: CPHalton-
Sequence.m (disclaimer).

13.45 Procedure: Generate a Latin hypercube

13.45.1 Description and Background

A Latin hypercube (LHC) is a random set of points in [0, 1] constructed so that for i = 1,2, ..., p the i-th coordinates
of the points are spread evenly along [0,1].

13.45.2 Inputs

e Number of dimensions p

* Number of points desired n

13.45. Procedure: Generate a Latin hypercube 143

https://virgo.aston.ac.uk/MUCM/WP3_1/code/CPHaltonSequence.m
https://virgo.aston.ac.uk/MUCM/WP3_1/code/CPHaltonSequence.m

Multi-Output GP Emulator Documentation, Release 0.6.0

13.45.3 Outputs

e LHC D = {x1,x2,...,2,}

13.45.4 Procedure

1. Foreach ¢ = 1,2,...,p, independently generate n random numbers u;;, U2, . . ., U;, in [0,1] and a random
permutation b;1, b;o, . . ., b;,, of the integers 0, 1,...,n — 1.

2. Foreachi=1,2,...,pand j =1,2,...,nletz;; = (b;j; + u;;)/n.
3. Forj =1,2,...,n, the j-th LHC pointis z; = (1, Z2j, ..., Tp;)-
13.45.5 Additional Comments
The construction of a LHC implies that the projection of the set of points into the i-th dimension results in n points

that are evenly spread over that dimension. If we project into two or more of the p dimensions, a LHC may also appear
to be well spread (space-filling) in that projection, but this is not guaranteed.

13.46 Procedure: Generate a lattice design

13.46.1 Description and Background

A lattice design is one of a number of non-random space-filling designs suitable for defining a set of points in the
simulator input space for creating a training sample.

The n point lattice in p dimensions is generated by a positive integer generator set g = (g1,. .., gp). See the “Addi-
tional Comments” below for discussion of the choice of generators.

13.46.2 Inputs

¢ Number of dimensions p
¢ Number of runs desired n

* Set of positive integer generators g1, ..., gp

13.46.3 Outputs

o Lattice design D = {x1,22,..., 2}

13.46.4 Procedure

For 7 =0,...,n — 1, generate lattice points as

Tjp1 = <]glm0d17 e]gdm0d1> .
n n

144 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

Note that the operator “mod 17 here has the effect of returning the fractional part of each number. For instance, if
7 ="7,n=>50and g; = 13, then

Jg =182
n
and so

L gimod1 = 0.82.
n

13.46.5 Additional Comments

A potential problem with lattice designs is the difficulty in finding suitable generators for a lattice. A condition for
generators is that g1, . . . , g4 and n should form a set of relatively prime numbers. However, this seems to be a necessary
but not sufficient condition to obtain a lattice that fills the design space well.

13.46.6 References

Bates, R.A., Riccomagno, E., Schwabe, R., Wynn, H. (1998). The use of lattices in the design of high-dimensional
experiments. IMS Lecture Notes, 34, 26-35.

Sloan, I.H., Joe, S. (1994). Lattice methods for multiple integration. Clarendon Press, Oxford.

Matlab code for generating lattice designs is available from Ron Bates (disclaimer).

13.47 Procedure: Sampling the posterior distribution of the correla-
tion lengths
13.47.1 Description and Background

This procedure shows how to draw samples from the posterior distribution of the correlation lengths 7} (6) and how to
use the drawn samples to make predictions using the emulator. This procedure complements the procedure for building
a Gaussian process emulator for the core problem (ProcBuildCoreGP), and represents the formal way of accounting
for the uncertainty about the true value of the correlation lengths §.

13.47.2 Inputs

* An emulator as defined in ProcBuildCoreGP, using a linear mean and a weak prior.

13.47.3 Outputs

* A set of s samples for the correlation lengths ¢, denoted as 8.

* A posterior mean 772*(-) and covariance function @*(-, -), conditioned on the drawn samples d.

13.47. Procedure: Sampling the posterior distribution of the correlation lengths 145

http://www.lse.ac.uk/collections/cats/People%20&%20CVs/RonBates.htm

Multi-Output GP Emulator Documentation, Release 0.6.0

13.47.4 Procedure

A method for drawing samples from the posterior distribution of § is via the Metropolis-Hastings algorithm. Setting
up this algorithm requires an initial estimate of the correlation lengths, and a proposal distribution. An initial estimate
can be the value that maximises the posterior distribution, as this is defined in the discussion page for finding the
posterior mode of correlation lengths (DiscPostModeDelta). We call this estimate 5.

According to reference [1], a proposal distribution can be
8@ ~ N (DY)

where 6(—1 is the sample drawn at the (i — 1)-th step of the algorithm, and

_ 24 (om0
o ﬁ(05)

2 2
The Hessian matrix 2 ;5 (9) is the same as ngga(;z , which was defined in DiscPostModeDelta, after substituting the

derivatives 0 A /07 with the derivatives A /9. The latter are given by

OAN o[22k — wry)?
((%k)m‘ B A(l,j) [52

0%A o (@h — w)? [Aaey — op)?
<826k),;7j B A(%J) |: - 6:|

s

and finally

0%A (2 —)P][22k, — ap)?
(6513&)1‘73‘ = 4639) { o} } { oy }

Having defined the initial estimate of ¢ and the proposal distribution ' (6¢~ V') we can set up the following
Metropolis Hastings algorithm

1. Set 6 equal to &

2. Add to §) a normal variate drawn from A/(0, V') and call the result &’
5 (8")

7 (00)

4. Draw w from a uniform distribution in [0,1]

3. Calculate the ratio o =

5. if w < acset 60D equal to &', else set it equal to §(*)
6. Repeat steps 2-5 s times

Finally, if we define as m*(Y) (2) and u*(¥) (z;, ') the posterior mean and variance of the emulator using sample §(), a
total estimate of these two quantities, taking into account all the s samples of § drawn, is given by

and
@*(z,0") = é Z w@ (2, 2') + é _ [m*“)(x) - m*(m)} [m*@ () — ﬁz*(x’)]

The procedure for predicting the simulator outputs using more than one hyperparameter sets is described in greater
detail in page (ProcPredictGP).

146 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

13.47.5 References

1. Gilks, W.R., Richardson, S. & Spiegelhalter, D.J. (1996). Markov Chain Monte Carlo in Practice. Chapman &
Hall.

13.48 Procedure: Morris screening method

The Morris method, also know as the Elementary Effect (EE) method, utilises a discrete approximation of the average
value of the Jacobian (matrix of the partial derivatives of the simulator output with respect to each of the simulator
inputs) of the simulator over the input space. The motivation for the method was screening for deterministic computer
models with moderate to large numbers of inputs. The method relies on a one-factor-at-a-time (OAT) experimental
design where the effects of a single factor on the output is assessed sequentially. The individual randomised experi-
mental designs are known as trajectories. The method’s main advantage is the lack of assumptions on the inputs and
functional dependency of the output to inputs such as monotonicity or linearity.

13.48.1 Algorithm

The algorithm involves generating R trajectory designs, as described below. Each trajectory design is used to compute
the expected value of the elementary effects in the simulator function locally. By averaging these a global approxima-
tion is obtained. The steps are:

1. Rescale all input variables to operate on the same scale using either standardisation or linear scaling as shown
in the procedure page for data standardisation (ProcDataPreProcessing). Otherwise different values of the step
size (see below) will be needed for each input variable.

2. Each point in the trajectory differs from the previous point in only one input variable by a fixed step size, A.
For k variables, each trajectory has k + 1 points, changing each variable exactly once. The start point for the
trajectory is random, although this can be modified to improve the algorithm. See the discussion below.

3. Compute the elementary effect for each input variable 1, ..., k: EE;(z) = W. e; is the unit vector

in the direction of the i*" axis for i = 1,...,k. Each elementary effect is computed with observations at the
pair of points z, z + Ae; that differ in the i input variable by the fixed step size A.

4. Compute the moments of the elementary effects distribution for each input variable:

)

R
i = Z
r=1
R
n=y
r=1

g; = Z—Z m;%)_ui)z.

E Ei (.’1? r)
R
R
R
(EEi(

r=1
The sample moment ji; is an average effect measure, and a high value suggests a dominant contribution of the i* input
factor in positive or negative response values (i.e. typically linear, or at least monotonic). The sample moment p is a
total effect measure; a high value indicates large influence of the corresponding input factor. ; may prove misleading
due to cancellation effects (that is on average over the input space the output goes up in response to the input as much
as it comes down), thus to capture main effects 1} should be used. Non-linear and interaction effects are estimated
with ¢;. The total number of model runs needed in the Morris’s method is (k + 1) R.

An effects plot is constructed by plotting p; or p; against o;. This plot is a visual tool to detecting and ranking effects.

13.48. Procedure: Morris screening method 147

Multi-Output GP Emulator Documentation, Release 0.6.0

An example on synthetic data demonstrating the Morris method is provided at the example page ExamScreeningMor-
ris.

13.48.2 Setting the parameters of the Morris method

There is interest in undertaking input screening with as few simulator runs as possible, but as the number of input
factors k is fixed, the size of the experiment required is controlled by the number of trajectory designs R. Usually
small values of R are used; for instance, in Morris (1991) the values R = 3 and R = 4 were used in the examples. A
value of R between 10 and 50 is mentioned in the more recent literature (see References). A larger value of R may
improve the quality of the global estimates at the price of extra runs. For a reasonably high dimensional input space,
with more than say 10 inputs, it would seem unwise to select R less than 10, since coverage of the space, and thus
global effects estimates require something close to space filling. It is likely for large k£ the number of trajectory designs
will need some dependency on R.

The step size A is selected in such a way that all the simulator runs lie in the input space and the elementary effects
are computed with reasonable precision. The usual choice of A in the literature is determined by the input space
considered for experimentation, which is a k dimensional grid constructed with p uniformly spaced values for each
input. The number p is recommended to be even and A to be an integer multiple of 1/(p — 1). Morris (1991) suggests
a value of A = p/2(p — 1) that ensures good coverage of the input space with few trajectories. One value for A is
generally used for all the inputs, but the method can be generalised to instead use different values of A and p for every
1mnput.

13.48.3 Extending the Morris method

In Morris’s original proposal, the starting points of the trajectory designs were taken at random from the input space
grid. Campolongo (2007) proposed generating a large number of trajectories, selecting the subset that maximise the
distance between trajectories in order to cover the design space. Another option is to use a Latin Hypercube design or
a Sobol sequence to select the starting points of the trajectories.

A potential drawback of OAT runs in the Morris’s method is that design points fall on top of each other when projected
into lower dimensions. This disadvantage becomes more apparent when the design runs are to be used in further
modelling after discarding unimportant factors. An alternative is to construct a randomly rotated simplex at every
point from which elementary effects are computed (Pujol, 2009). The computation of distribution moments ;, i, o;
and further analysis is similar as the Morris’s method, with the advantage that projections of the resulting design do
not fall on top of existing points, and all observations can be reused in a later stage. A potential disadvantage of this
approach is the loss of efficiency in the computation of elementary effects.

Lastly, it is possible to modify the standard Morris algorithm to minimize the number of simulator runs required by
employing a sequential version of the algorithm. Details can be found in Boukouvalas et al (2010).

13.48.4 References
Morris, M. D. (1991, May). Factorial sampling plans for preliminary computational experiments. Technometrics, 33
(2), 161-174.

Boukouvalas, A., Gosling, J.P. and Maruri-Aguilar, H., An efficient screening method for computer experiments.
NCRG Technical Report, Aston University (2010)

Saltelli, A., Chan, K. and Scott, E. M. (eds.) (2000). Sensitivity Analysis. Wiley.

Francesca Campolongo, Jessica Cariboni, and Andrea Saltelli. An effective screening design for sensitivity analysis
of large models. Environ. Model. Softw., 22(10):1509-18, 2007.

Francesca Campolongo, Jessica Cariboni, Andrea Saltelli, and W. Schoutens. Enhancing the Morris Method. In
Sensitivity Analysis of Model Output, pages 369-79, 2004.

148 Chapter 13. Uncertainty Quantification Methods

http://wiki.aston.ac.uk/twiki/pub/AlexisBoukouvalas/WebHome/screenReport.pdf
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471998923

Multi-Output GP Emulator Documentation, Release 0.6.0

Gilles Pujol. Simplex-based screening designs for estimating metamodels. Reliability Engineering & System Safety,
94:1156-60, 2009.

13.49 Procedure: Generate an optimised Latin hypercube design

13.49.1 Description and Background

A Latin hypercube (LHC) is a random set of points in [0, 1]? constructed so that for i = 1,2, ..., p the i-th coordinates
of the points are spread evenly along [0,1]. However, a single random LHC will rarely have good enough space-filling
properties in the whole of [0, 1]? or satisfy other desirable criteria. Therefore, it is usual to generate many LHCs and
then select the one having the best value of a suitable criterion.

We present here the procedure for a general optimality criterion and also include details of the most popular criterion,
known as maximin. A thorough consideration of optimality criteria may be found in the discussion page on technical
issues in training sample design for the core problem (DiscCoreDesign).

13.49.2 Inputs

¢ Number of dimensions p
* Number of points desired n
e Number of LHCs to be generated NV

* Optimality criterion C' (D)

13.49.3 Outputs

 Optimised LHC design D = {x1,29,...,2,}

13.49.4 Procedure

Procedure for a general criterion

1. Fork =1,2,..., N independently, generate a random LHC D}, using the procedure page on generating a Latin
hypercube (ProcLHC) and evaluate the criterion Cy, = C'(Dy).

2. Let K = argmax{Dy} (i.e. K is the number of the LHC with the highest criterion value).

3. Set D = Dg.

Note that the second step here assumes that high values of the criterion are desirable. If low values are desirable, then
change argmax to argmin.

Maximin criterion

A commonly used criterion is

C(D) = min |z; —zj|,

13.49. Procedure: Generate an optimised Latin hypercube design 149

Multi-Output GP Emulator Documentation, Release 0.6.0

where |2; — x;/| denotes a measure of distance between the two points z; and x; in the design. The distance measure
is usually taken to be squared Euclidean distance: that is, if u = (u1, ug, . .., u,) then we define

P
lu| = uTu = Zuf
i=1

High values of this criterion are desirable.

13.49.5 Additional Comments

Note that the resulting design will not truly be optimal with respect to the chosen criterion because only a finite number
of LHCs will be generated.

13.50 Procedure: Generate random outputs from an emulator at
specified inputs

13.50.1 Description and Background

This procedure describes how to randomly sample output values from an emulator. This, of course, requires a fully

probabilistic emulator such as the Gaussian process emulator described in the core thread ThreadCoreGP, rather

than a Bayes linear emulator. You should refer to ThreadCoreGP, the procedure page on building a GP emulator

(ProcBuildCoreGP), the variant thread on analysing a simulator with multiple outputs using GP methods (ThreadVari-

antMultipleOutputs) and the procedure page on building multivariate GP emulators (ProcBuildMultiOutputGP) for
definitions of the various functions used in this procedure.

13.50.2 Inputs

* An emulator
¢ Emulator hyperparameters 6

* Asetof points D = («,...,x,) in the input space at which randomly sampled outputs are required.

13.50.3 Outputs

* A set of jointly sampled values from the distribution of f(D’) = { f(z}),..., f(z),)} .

13.50.4 Procedure

Scalar output general case

1. Define

2. Define v*(D’, D'), the n’ x n’ matrix with 4, j element given by v*(z}, z}).

3. Generate the random vector {f(z}),..., f(z},)}* from N, ,{m*(D’),v*(D’, D')}, the multivariate normal
distribution with mean vector m*(D’) and variance matrix v*(D’, D").

150 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

Multivariate output general case

We have a simulator f(.) that produces a vector f(z) of r outputs for a single input value x. To clarify notation, we
generate the random vector F' = {f(z}),..., f(«/,)}", arranged as follows:

(output 1 at input)

(output 1 at input x

L)
‘output r at input)
(output r at input z/,,)
1. Define
m* (D) = {m* (&))", ..., m* (@),) "}

In the multivariate case this is an n’ x r matrix with each of the r columns representing one of the simulator
outputs. We arrange this into an n’r x 1 column vector by stacking the r columns of the n’ x r matrix into a
single column vector (the vec operation):

w (D) = vee{m* (D')}.

2. Define V, the (n'r) x (n'r) matrix with 4, j element defined as the posterior covariance between elements ¢ and
jof F={f(x}),..., f(zl)}".

3. Generate the random vector F' from N,,/,.{u*(D’), V'}, the multivariate normal distribution with mean vector
w*(D’) and variance matrix :math:‘ V°.

Multivariate output general case with separable covariance function

Suppose we have a separable covariance function of the form X¢(-, -), where ¥ is the output space covariance matrix,
and c¢(+,-) is the input space covariance function. Following the notation in ProcBuildMultiOutputGP, we write the
posterior covariance function as

Cov[f(z), f(2")|f(D)] = Bc* (2, 2") = B{c(z,2') — c(z)T A e(2)},

with A = ¢(D, D). The posterior variance matrix :math:* V* of { f(x}),..., f(z/,)}* can then be written as

n'!

V =X ®c*(D’,D"), where ® is the kronecker product. We can now generate { f(x), ..., f(z!,)}" using the matrix
normal distribution:

1. Define Uy, to be the lower triangular square root of X
2. Define U, to be the lower triangular square root of ¢*(D’, D’)
3. Generate Z,, ,: ann’ X r matrix of independent standard normal random variables
4. The random draw from the distribution of f(D’) is given by F' = U.Z, .U,
Fis an n’ x r matrix, arranged as follows:
(output 1 atinputa)) --- (outputr atinputz})
F— . .

(output 1 atinput /,,) --- (outputr atinput /)

13.50. Procedure: Generate random outputs from an emulator at specified inputs 151

Multi-Output GP Emulator Documentation, Release 0.6.0

Scalar output linear mean and weak prior case
1. Define

m*(D') = {m*(a}),...,m"(z;,)}".

2. Define v*(D’, D'), the n’ x n’ matrix with 4, j element given by v*(z}, 7).

3. Generate the random vector {f(z}),..., f(z/,)}T from a multivariate student t distribution with mean vector
m*(D"), variance matrix V*(D’, D'), and n — ¢ degrees of freedom.

As an alternative to sampling from the multivariate student t distribution, you can first first sample a random
value of o and then sample from a multivariate normal instead:
a. Sample 72 from the T'{(n — ¢q)/2, (n — ¢ — 2)5%/2} distribution. Note the parameterisation of the gamma

distribution here: if W ~ Gamma(a, b) then the density function is p(w) = Fb((;)wa_l exp(—bw).

b. Set 02 = 1/72 and replace 62 by 1/72 in the formula for v*(z/, 7).

c. Compute v*(D’, D'), the n' x n’ matrix with i, j element given by v*(z}, z}).

d. Generate the random vector { f(z}),..., f(z},)}T from N, {m*(D’),v*(D’, D)}, the multivariate nor-
mal distribution with mean vector m*(D’) and variance matrix v*(D’, D’).

Multivariate output linear mean and weak prior case

We have a simulator f(-) that produces a vector f(z) of r outputs for a single input value x. To clarify notation, we
generate the random vector F' = {f(z}),..., f(«/,)}", arranged as follows:

(output 1 at input)

3 /
(output 1 at input 2,)

F= .
:output r at input x})
(output r at input z/,,)
1. Define
m* (D) = {m* (&))", ... ,m* (@},) "}

In the multivariate case this is an n’ X r matrix with each of the r columns representing one of the simulator
outputs. We arrange this into an n'r x 1 column vector by performing the V ec operation:

w* (D) = vee{m* (D)}

2. Define V, the (n'r) x (n’r) matrix with ¢, j element defined as the posterior covariance between elements i and
jof F={f(x}),..., f(z!)}T.

3. Generate the random vector F' from a multivariate student t distribution with mean vector p*(D’), variance
matrix V', and n — q degrees of freedom.

152 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

Multivariate output linear mean, weak prior, and separable covariance function case

Suppose we have a separable covariance function of the form X¢(-, -), where ¥ is the output space covariance matrix,
and c(-, -) is the input space covariance function. Following the notation in ProcBuildMultiOutputGP, we write the
posterior covariance function as

1

Cov[f(z), f(&)|f(D)] = Sc*(z, ') = S {c(x,x’) —e(z)T A e(a!) + R(z) (HT A H)~ R(a:’)T} :

with A = ¢(D, D) and R(x) = h(z)" — ¢(x)T A~1 H. The posterior variance matrix V of { f(x}), ..., f(z/,)}T can
then be written as

V =S ®c* (D', D'), where ® is the kronecker product. We can now generate {f(h),..., f(=!,)}7T using the matrix
student ¢ distribution:

1. Define Us; to be the lower triangular square root of 5
2. Define U, to be the lower triangular square root of ¢*(D’, D’)

3. Generate a n’ x r matrix T}, , having a multivariate t distribution with uncorrelated elements, in the following
three sub-steps.

a. Generate Z,,, ,: ann’ X r matrix of independent standard normal random variables.
b. Generate W ~ Gamma{(n — q)/2,0.5}.
c. SetT, . = L

-1 7. .
VW/n—q) "

Note the parameterisation of the gamma distribution here: if W ~ Gamma(a,b) then the density function is

p(w) = Flz(;) w ! exp(—bw).

4) The random draw from the distribution of f(D’) is given by F' = U.T,, , U,

Fis ann’ x r matrix, arranged as follows:
(output 1 atinput ;) --- (outputr at input x})
F— .)

output 1 atinputz’,) --- (outputr atinput z’,
p p n p p n

13.51 Procedure: Transformed outputs

13.51.1 Description and Background

It is sometimes appropriate to build an emulator of some transformation of the simulator output of interest, rather than
the output itself. See the discussion page on the Gaussian assumption (DiscGaussianAssumption) for the background
to using output transformations.

The emulator allows inference statements about the transformed output, and for instance can be used to conduct
uncertainty analysis or sensitivity analysis of the transformed output. However, the interest lies in making such
inferences and analyses on the original, untransformed output. The procedure explains how to construct these from a
fully Bayesian emulator of the transformed output.

In the case of a Bayes linear emulator, entirely different methods are needed to make inferences about the original
output.

13.51. Procedure: Transformed outputs 153

Multi-Output GP Emulator Documentation, Release 0.6.0

13.51.2 Inputs

The input is a fully Bayesian emulator for the transformed simulator output.

We will use the following notation. For any given input configuration z, let the original output be f(x), and let the
transformed output be t(z) = g{f(x)}, so that g denotes the transformation. The emulator therefore provides a
probability distribution for ¢(x) at any or all values of z. We suppose that the transformation is one-to-one and that
the inverse transformation is g1, i.e. f(z) = g~ {t(z)}.

13.51.3 Outputs

Outputs are any desired inferences about properties of the original output. For instance, if we let the inputs be random,
denoting them now by X, then uncertainty analysis of f(X) might include as one specific inference the expectation
(with respect to the code uncertainty) of the uncertainty mean M = E[f(X)]. In this case the property is M and the
inference is the mean (interpreted as an estimate of M).

13.51.4 Procedure

The simplest procedure is to use simulation. The method of simulation based inference for emulators requires only
a little modification. The method involves drawing random realisations from the emulator distribution, and then
computing the property in question for each such realisation. The set of property values so derived is a sample from
the (code uncertainty) distribution of that parameter. From this sample we compute the necessary inferences.

When we have a transformed output, we add one more step. We draw random realisations from the emulator for
t(x), but we now apply the inverse transformation g ! to every point on the realisation before computing the property
value. This ensures that the parameter values are now a sample from the distribution of that property as defined for the
original output.

13.51.5 Additional Comments

There are specific cases where we can do better than this. For some transformations we can derive the distribution of
f () for any given x analytically, at least conditionally on hyperparameters. In some cases, we may even be able to
derive uncertainty analysis or sensitivity analysis. This is an area for ongoing research.

13.52 Procedure: Principal components and related transformations
of simulator outputs

13.52.1 Description and Background

One of the methods for emulating several outputs from a simulator considered in the alternatives page on approaches
to emulating multiple outputs (Al/tMultipleOutputsApproach) is to transform the outputs into a set of ‘latent outputs’
that can be considered uncorrelated, and then to emulate the latent outputs separately. We consider here various linear
transformations for this purpose, although probably the most useful is the principal components transformation.

There are two steps in the procedure.
1. Obtain an r X r variance matrix V' for the r outputs.

2. Derive an r X r transformation matrix P and apply the transformation.

154 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

We consider each of these steps in outline before describing the procedure itself.

The variance matrix V' for the outputs is unknown and must be estimated. The basic source for such estimation is the
training sample, comprising output vectors from the simulator at n points in the space of possible input configurations.

It is simple to compute the sample variance matrix of these vectors, but sample covariances and correlations measure
correlation between the deviations of pairs of outputs from their sample means, whereas for V' we require correlation
in deviations from the mean functions m,,(-)(uv = 1,2, ..., r) of the r outputs. The procedure below therefore involves
first estimating these mean functions.

For the second step, there are various ways to derive a linear transformation for a row vector of random quantities w
with variance matrix V' so that the elements of the transformed row vector w* = wPT are uncorrelated. In general, the
covariance matrix of w* is B = PV PT, and we seck a matrix P for which this becomes diagonal. Then the elements
of w* are uncorrelated with variances equal to the diagonal elements of B.

Probably the most useful for transforming simulator outputs is the principal components transformation. Here we let
P be the matrix of eigenvectors of V', whereupon B is the diagonal matrix with the corresponding eigenvalues of V/
down the diagonal.

Another class of transformations arise by letting P = S~!, where S is a square root of V' in the sense that V = SST.
Then B = I, the r x r identity matrix. One square root matrix that is easy to calculate (and to invert to get P) is
the Cholesky square root; see also the procedure page on Pivoted Cholesky decomposition (ProcPivotedCholesky).
However, it is easy to see that if S is a square root of V' then so is RS for any orthogonal matrix R.

13.52.2 Inputs

* The (r x 1) row vectors f(x;) (for i = 1,2,...n) of outputs from the simulator at n design points D =
{x1,22,. .., Tpn}.

13.52.3 Outputs

¢ Transformation matrix P.

* Transformed ‘latent’ output vectors f*(x;) (fori = 1,2, ...n) at the n design points.

13.52.4 Procedure
Derive V

1. Choose a set of basis functions in the form of a ¢ x 1 vector function h(-). The same set of basis functions
should be used for all the outputs, so if a certain basis function is thought a priori to be appropriate to model the
expected behaviour of any one of the outputs (as a function of the inputs) then this should be included in A(-).

2. Foreachu = 1,2,...,r, construct the n x 1 vector F,, of values of output u. Thus, F, is the u-th column of
the matrix f(D). (See the toolkit notation page (MetaNotation) for the use of D as a function argument, as in

F(D))
3. For each u, fit a conventional linear regression model to vector Fy,, with h(D) as the usual n x ¢ X-matrix. Let
the ¢ x 1 vector 3, be the fitted (i.e. estimated) regression coefficients.

4. For each u, form the n x 1 vector of residuals E,, = F,, — h(D)TBu and form these columns into the n X 7
residual matrix E.

5. SetV =n"'ETE.

13.52. Procedure: Principal components and related transformations of simulator outputs 155

Multi-Output GP Emulator Documentation, Release 0.6.0

The fitting of linear regression models is available in all the major statistical software packages and in many program-
ming languages. An alternative to fitting the conventional linear regression model would be to build an emulator for
each output using the core thread that treats the core problem using Gaussian methods (7hreadCoreGP) and to define
B as in the procedure page for building a Gaussian process emulator (ProcBuildCore GP); however, although this might
in principle be better it is unlikely in practice to make an appreciable difference or to be worth the extra effort.

Derive transformation

Having obtained V/, the transformation matrix P and the diagonal variance matrix B can be obtained using standard
software to apply the relevant decomposition method. For instance, software for eigenvalue decomposition is available
in numerous computing packages (e.g. Matlab), the Cholesky decomposition is almost as widely available and the
pivoted Cholesky decomposition is detailed in ProcPivotedCholesky.

The latent outputs are then characterised by the (row) vectors f*(x;) = f(z;)PT, fori = 1,2,...,n. Equivalently,

f*(D) = f(D)P".

13.52.5 Additional Comments

Transformations are a very general idea, and there are related uses in the toolkit. The procedure page on transforming
outputs (ProcOutputTransformation) concerns transforming individual outputs (generally in a nonlinear way), moti-
vated principally by making the assumption of a Gaussian process more appropriate.

Principal components and related transformations, particularly the pivoted Cholesky decomposition, are used in vali-
dation; see the procedure page on validating a Gaussian process emulator (ProcValidateCoreGP). The variance matrix
V is in that case obtained directly from the emulator as the predictive variance matrix of the validation sample.

If the outputs are strongly correlated, then it might be possible to reduce the number of outputs, for example by
retaining only the first »* < r eigenvectors of the P matrix with the largest eigenvalues, although in this case it is
necessary to include an additional nugget effect as discussed in the alternatives page on emulator prior correlation
function (AltCorrelationFunction).

13.53 Procedure: Pivoted Cholesky decomposition

13.53.1 Description and Background

The Cholesky decomposition is named after Andre-Louis Cholesky, who found that a symmetric positive-definite
matrix can be decomposed into a lower triangular matrix and the transpose of the lower triangular matrix. Formally,
the Cholesky method decomposes a symmetric positive definite matrix A uniquely into a product of a lower triangular
matrix L and its transpose, i.e. A = LLT, or equivalently A = RT R where R is a upper triangular matrix.

The Pivoted Cholesky decomposition, or the Cholesky decomposition with complete pivoting, of a matrix A returns a
permutation matrix P and the unique upper triangular matrix R such that P” AP = RT R. The permutation matrix is
an orthogonal matrix, so the matrix A can be rewritten as A = (RPT)T RPT

An arbitrary permutation of rows and columns of matrix A can be decomposed by the Cholesky algorithm, PT AP =
RTR, where P is a permutation matrix and R is an upper triangular matrix. The permutation matrix is an orthogonal
matrix, so the matrix A can be rewritten as A = PRT RPT, so that C = PR is the pivoted Cholesky decomposition
of A.

Pivoted Cholesky algorithm: This algorithm computes the Pivoted Cholesky decomposition PPAP = RTR of a
symmetric positive semidefinite matrix A € "*". The nonzero elements of the permutation matrix P are given by
P(piv(k),k)=1,k=1,...,n

More details about the numerical analysis of the pivoted Cholesky decomposition can be found in Higham (2002).

156 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

13.53.2 Inputs

* Symmetric positive-definite matrix A

13.53.3 Outputs

¢ Permutation matrix P

* Unique upper triangular matrix R

13.53.4 Procedure

Initialise

R = zeros(size(A))
piv(k) =k, Vk € [1,n]
Repeatfork =1:n

{Finding the pivot}
B=A(k:n,k:n)
l1={i: A(i,i) == maxdiag (B)}
{Swap rows and columns}
A k) <=> A(:,1)
R(:, k) <=> R(:,1)
A(k,:) <=> A(l,:)
piv(k) <=> piv(l)
{Cholesky decomposition }
R(k, k) = Ak, k)
R(k,k+1:n)=R(k, k) LAk, k +1:n)
{Updating A}
Ak+1:nk+1:n)=Ak+1:nk+1:n)— R(k,k+1:n)TR(k,k+1:n)

End repeat

13.53.5 Additional Comments

If A is a variance matrix, the pivoting order given by the permutation matrix P has the following interpretation: the
first pivot is the index of the element with the largest variance, the second pivot is the index of the element with the

largest variance conditioned on the first element, the third pivot is the index of the element with the largest variance
conditioned on the first two elements element, and so on.

13.53.6 References

* Higham, N.J. Accuracy and Stability of Numerical Algorithms. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2002. ISBN 0-89871-521-0. Second Edition.

13.53. Procedure: Pivoted Cholesky decomposition 157

Multi-Output GP Emulator Documentation, Release 0.6.0

13.54 Procedure: Predict simulator outputs using a GP emulator

13.54.1 Description and Background

A Gaussian process (GP) emulator is a statistical representation of knowledge about the outputs of a simulator based
on the Gaussian process as a probability distribution for an unknown function. The unknown function in this case is
the simulator, viewed as a function that takes inputs and produces one or more outputs. One use for the emulator is
to predict what the simulator would produce as output when run at one or several different points in the input space.
This procedure describes how to derive such predictions in the case of a GP emulator built with the procedure for
a single output (ProcBuildCoreGP) or the procedure for multiple outputs (ProcBuildMultiOutputGP) . The multiple
output case will be emphasised only where this differs from the single output case.

13.54.2 Inputs

¢ An emulator

* A single point 2’ or a set of points z}, 25, . ..,/ at which predictions are required for the simulator output(s)

13.54.3 Outputs

* Predictions in the form of statistical quantities, such as the expected value of the output(s), the variance (matrix)
of the outputs, the probability that an output exceeds some threshold, or a sample of values from the predictive
distribution of the output(s)

13.54.4 Procedure

The emulator, as developed for instance in ProcBuildCoreGP or ProcBuildMultiOutputGP, has two parts. The first is
a distribution, either a GP or its cousin the #-process, for the simulator output function conditional on some hyperpa-
rameters. The second is generally a collection of sets of values of the hyperparameters being conditioned on, but may
be just a single set of values. We let s denote the number of hyperparameter sets provided with the emulator. When
we have a single set of hyperparameter values, s = 1. See the discussion page on the forms of GP based emulators
(DiscGPBasedEmulator) for more details.

The procedure for computing predictions generally takes the form of computing the appropriate predictions from the
GP or t-process, given that the hyperparameters takes each of the s sets of values in turn, and if s > 1 then combining
the resulting s predictions. See also the discussion page on Monte Carlo estimation (DiscMonteCarlo), where this
approach is treated in more detail and in particular there is consideration of how many sets of hyperparameters should
be used.

Predictive mean

The conditional mean of the output at z’, given the hyperparameters, is obtained by evaluating the mean function of
the GP or t-process at that point. When s = 1, this is done with the hyperparameters fixed at the single set of values.
When s > 1, we evaluate the mean function using each of the s hyperparameter sets and the predictive mean is the
average of those s conditional means.

If required for a set of points 2, x5, . . ., 2/ ,, the predictive mean of the output vector is the vector of predictive means

y <l
obtained by applying the above procedure to each x; separately. In the multi-ouput case things are somewhat more
complicated. Each output is itself a 1 X r vector, so the outputs at several input configurations can be treated in two
ways, either as as vector of vectors (that is a n’ x r matrix) or more helpfully stacked into a n/r x 1 vector of outputs

at each input configuration. This vector can then be treated as described above.

158 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

Predictive variance (matrix)

Consider the case where we wish to derive the predictive variance matrix of the output vector at a set of points
x1,25,...,2,,. If s = 1 the predictive variance matrix is just the matrix of conditional variances and covariances
from the GP or t process, using the single set of hyperparameter values.

If s > 1 the procedure is more complex, and requires several steps as follows.

1. For i = 1,2,...,s fix the hyperparameters at the i-th set, and given these values of the hyperparameters,
compute the vector of conditional means E; and the matrix V; of conditional variances and covariances from
the GP or t-process.

2. Compute the average values £ = s~ !'>: F; and V = s~ 's2: Vi, (Note that £ is the predictive mean
described above.)

3. Compute the variance matrix of the conditional means, W = s~!'yc_ (E; — E)(E; — E)T.

4. The predictive variance matrix is V + W.

Prediction at a single point z’ is the special case n’ = 1 of this procedure. In brief, the predictive variance is either
just the conditional variance evaluated with the single set of hyperparameter values, or if s > 1 the average of the
conditional variances plus the variance of the conditional means. To handle the multi-output case the most simple
approach is to pursue the vectorisation of the outputs to a n'r x 1 vector. In this case the variance matrix is n'r x n'r
(with a range of possible simplifications if the covariance is assumed to be separable. This (potentially very large)
variance matrix can be treated identically to the single output case.

Probability of exceeding a threshold

The conditional probability of exceeding a threshold can be computed from the GP or t-process for any given set
of hyperparameter values. For a GP, this means computing the probability of exceeding a given value for a normal
random variable with given mean and variance. For the t-process it is the probability of exceeding that value for a
t random variable with given mean, variance and degrees of freedom. For s > 1, the predictive probability is the
average of the conditional probabilities.

For multiple outputs this is more complex, since it is possible to ask more complex questions, such as the joint
probability of two or more outputs exceeding some threshold. The complexity depends on the assumptions made in
constructing the multivariate emulator, and is discussed in the alternatives page on approaches to multiple outputs
(AltMultipleOutputsApproach). For example if separate independent emulators are used, then the probability of all
outputs lying above some threshold will be the product of the individual probabilities of each output being above the
threshold. This will not be true if the outputs are correlated and the full multivariate GP or t-process should be used.

Sample of predictions

Suppose we wish to draw a sample of N values from the predictive distribution of the simulator output at the input
', or of the outputs at the points x%, 5, ..., x,,. This means using N sets of hyperparameter values. If N < s, then
we select a subset of the full set of available hyperparameter sets. (These will usually have been produced by Markov
chain Monte Carlo sampling, in which case the subset should be chosen by thinning the sequence of hyperparameter
sets, e.g. if N = s/2 we could take only even numbered hyperparameter sets.)

If N > s we will need to reuse some hyperparameter sets. Although this is generally undesirable, in the case s = 1 it
is unavoidable! However, it may be feasible to obtain a larger sample of hyperparameter sets: see DiscMonteCarlo.

For each chosen hyperparameter set, we make a single draw from the conditional distribution of the output(s) given by
the GP or t-process, conditional on that hyperparameter set. Procedures for generating random outputs are described
in ProcOutputSample.

13.54. Procedure: Predict simulator outputs using a GP emulator 159

Multi-Output GP Emulator Documentation, Release 0.6.0

13.54.5 Additional Comments

It is possible to develop procedures for other kinds of predictions, but not all will be simple. For instance to output a
predictive credible interval would be a more complex procedure.

13.55 Procedure: Predicting a function of multiple outputs

13.55.1 Description and Background
When we have a multiple output simulator, we will sometimes be interested in a deterministic function of one or more
of the outputs. Examples include:

* A simulator with outputs that represent amounts of rainfall at a number of locations, and we wish to predict
the total rainfall over a region, which is the sum of the rainfall outputs at the various locations (or perhaps a
weighted sum if the locations represent subregions of different sizes).

* A simulator that outputs the probability of a natural disaster and its consequence in loss of lives, and we are
interested in the expected loss of life, which is the product of these two outputs.

¢ A simulator that outputs atmospheric CO- concentration and global temperature, and we are interested in using
them to compute the gross primary productivity of an ecosystem.

If we know that we are only interested in one particular function of the outputs, then the most efficient emulation
method is to build a single output emulator for the output of that function. However, there are situations when it is
better to first build a multivariate emulator of the raw outputs of the simulator

* when we are interested in both the raw outputs and one or more functions of the outputs;

¢ when we are interested in function(s) that depend not just on the raw outputs of the simulator, but also on some
other auxiliary variables.

In such situations we build the multivariate emulator by following ThreadVariantMultipleOutputs. The multivariate
emulator can then be used to predict any function of the outputs, at any set of auxiliary variable values, by following
the procedure given here.

We consider a simulator f(-) that has r outputs, and a function of the outputs g(-). The procedure for predicting g(f())
is based on generating random samples of output values from the emulator, using the procedure ProcOutputSample.

13.55.2 Inputs

* A multivariate emulator, which is either a multivariate GP obtained using the procedure ProcBuildMultiOut-
putGP, or a multivariate t-process obtained using the procedure ProcBuildMultiOutputGPSep, conditional on
hyperparameters.

* s sets of hyperparameter values.
* A single point 2’ or a set of n’ points zf, x5, . .., /,, at which predictions are required for the function g(.).

¢ N, the size of the random sample to be generated.

13.55.3 Outputs

* Predictions of g(-) at 2}, x5, . .., z},, in the form of a sample of size N of values from the predictive distribution
of g(-).

160 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

13.55.4 Procedure

Forj=1,..,N,
1. Pick a set of hyperparameter values at random from the s sets that are available.

2. Generate a n/r x 1 random vector F7 from the emulator, using the procedure set out in the ‘Multivariate output
general case’ section of ProcOutputSample.

3. Form the r x n/ matrix M7 such that vec[M’T] = FJ.
4. For{=1,...,n/, let mi,' be the ¢ and let Gi = g(my)
The sample is then {G7 : j = 1, ..., N}, where G7 = (G4, ...,G",).

13.56 Procedure: Predict functions of simulator outputs using multi-
ple independent emulators

13.56.1 Description and Background

Where separate, independent emulators have been built for different simulator outputs, there is often interest in predict-
ing some function(s) of those outputs. The procedures here are for making such predictions. We assume that, whatever
method was used to build each emulator the corresponding toolkit thread also describes how to make predictions for
that emulator alone.

The individual emulators may be Gaussian process (GP) or Bayes linear (BL) emulators, although some of the specific
procedures given here will only be applicable to GP emulators.

13.56.2 Inputs

* Emulators for r simulator outputs f,(z),u =1,2,...,7
o ¢/ prediction functions f} (x) = g {f1(z),..., fr(¥)},w=1,2,... ¢

* A single point 2’ or a set of points z}, 2, . . ., z},, at which predictions are required for the prediction function(s)

13.56.3 Outputs

* Predictions in the form of statistical quantities, such as expected values, variances and covariances or a sample
of values from the (joint) predictive distribution of the prediction function(s) at the required prediction points

13.56.4 Procedures
The simplest case is when the prediction functions are linear in the outputs. Then
fu(@) = aw + f(x)wa,

where a,, is a known constant, f(x) is the vector of r outputs f1(z),..., f-(z) and b, is a known r x 1 vector. It is
straightforward to derive means, variances and covariances for the functions f; () at the prediction point(s) when the
prediction functions are linear. For nonlinear functions, the procedure is to draw a large sample from the predictive
distribution and to compute means, variances and covariances from this sample (but note that this is only possible for
GP emulators).

13.56. Procedure: Predict functions of simulator outputs using multiple independent emulators161

Multi-Output GP Emulator Documentation, Release 0.6.0

Predictive means

Suppose that we have linear prediction functions. Let the n’ X 1 predictive mean vector for the u-th emulator at the n’
prediction points be m,,. (If we only wish to predict a single point, then this is a scalar.) Let the n’ x r matrix M have
columns my, ..., m,. Then the predictive mean (vector) of f(z) at the n’ prediction points is a1, + M b,,, where
1, denotes a vector of n’ ones, so that a,, 1, is an’ x 1 vector with all elements equal to a.,.

Predictive variances and covariances

Suppose that we have linear prediction functions. Let the n’ x n’ predictive variance matrix for the u-th emulator at
the n’ prediction points be V,,. (If we only wish to predict a single point, then this is a scalar.) Let b, be the u-th
element of b,,. Then the variance matrix for f,; () at the n’ prediction points is

Z waVu,
u=1

and the covariance matrix between f; (x) and f,(x) at those points is

Z buwbuw’Vu-
u=1

Sample of predictions

Suppose we wish to draw a sample of N values from the (joint) predictive distribution of the prediction functions
at the input 2/, or at the points z/, 5, ..., z},. For GP emulators, such samples can be drawn from the predictive

distributions of the individual outputs. Let £ (x}) be the I-th sampled value of f,(z) at ¢-th prediction point.

Then the I-th sampled value, I = 1,2,..., N, of f*(z}) is gw{fl(l)(xé), ce T(I)(acg)}

13.57 Procedure: Simulating realisations of an emulator

13.57.1 Description and Background

The key device in MUCM is the emulator, which is a statistical representation of knowledge about the output(s) of
a simulator. There are two principal approaches to emulation, the fully Bayesian approach and the Bayes linear ap-
proach. The fully Bayesian approach is often characterised by its representation of the simulator output as a Gaussian
process (GP), although formally the emulator in this approach is only a GP conditional on various uncertain hyperpa-
rameters. The emulator proper is the result of averaging over the uncertain values of these hyperparameters. One step
in that averaging process may produce a related statistical representation known as a 7-process.

However, it is not feasible generally to average out all the hyperparameters algebraically, to produce a clean for-
mulation for the emulator proper. Instead, within the MUCM toolkit we formulate the emulator in two parts; see the
discussion page on forms of GP emulators (DiscGPBasedEmulator) for more details. First we have a GP or a t-process
conditional on some hyperparameters, and second we provide a sample of values of those hyperparameters that are
representative of the uncertainty concerning them. See for example the procedure for building a GP emulator for the
core problem (ProcBuildCoreGP).

Often, this “sample” contains only a single set of values for the hyperparameters, and in this case the emulator is a
simple GP or t-process.

The MUCM technology is particularly valuable when the simulator is sufficiently complex that it takes appreciable
amounts of computer time to complete just one run, i.e. to evaluate the simulator outputs for a single configuration

162 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

of input values. The purpose of building the emulator is to facilitate various tasks associated with using the simulator
that would be impractical to do directly with the simulator itself because they would require infeasible amounts of
computation. Procedures for building an emulator and for using it to carry out various common tasks are presented
in this toolkit. For instance, fully Bayesian emulation for the core problem is fully documented in the core thread
ThreadCoreGP.

Some nonstandard tasks may be addressed by a Monte Carlo process of generating sample realisations of the emulator.
The emulator is a complete (posterior) probability distribution for the simulator output function f(-). Each sample
realisation is an independent random draw from this probability distribution, and so is itself a function. A sample
of R realisations f()(-), f2)(-),..., fF)(.) therefore describes the emulator uncertainty about the simulator output
function f(-).

We present here a procedure for generating such a sample of emulator realisations.

13.57.2 Inputs

* An emulator, formulated as a GP or t-process conditional on hyperparameters, plus s sets of hyperparameter
values.

* Number of realisations required, R.

13.57.3 Outputs

* Realisations f(*)(.), k=1,2,...,R.

13.57.4 Procedure

Each realisation begins by selecting one of the sets of hyperparameter values. If R < s, we can simply take a
random set of values for each realisation or else use a more systematic sample (such as taking only even-numbered
hyperparameter sets, if R = s/2). If R > s some sets will be reused (and if s = 1, i.e. we have only a single set of
hyperparameter values, then this set is used for every realisation). This general approach is presented in more detail
in the discussion page on Monte Carlo estimation (DiscMonteCarlo), where in particular the possibility of obtaining a
larger sample of hyperparameter sets is considered.

For the k-th realisation, f (’“)(-) is generated by a process that uses a realisation design comprising a set of n’ points
x}, 25, . .., x,,. The discussion page on design for generating emulator realisations (DiscRealisationDesign) considers
the choice of these points.

Here is the procedure for the k-th realisation:
1. Select a set of hyperparameter values as discussed above.

2. Draw a single random set of predicted values for the outputs at the realisation design points, using the procedure
given in ProcOutputSample.

3. Rebuild the emulator mean function using these as additional training data. That is, we use the given set of
hyperparameters, but the training data design is augmented with the realisation design points, and the training
data observation vector is augmented with the sampled predictions obtained in the preceding step.

4. This rebuilt emulator mean function is then f*)(-).

13.57. Procedure: Simulating realisations of an emulator 163

Multi-Output GP Emulator Documentation, Release 0.6.0

13.57.5 Additional Comments

The realisation design needs to have enough points so that the variance of the rebuilt emulator is very small at all points
of interest; see DiscRealisationDesign. If this is not practical, then the sample realisations will not fully account for
all the uncertainty in the emulator.

13.58 Procedure: Generating a Sobol’s Sequence

13.58.1 Description and Background

The numbers in a Sobol’s sequence are generated directly as binary fractions of length w bits. These numbers are
created from a special set of w binary fractions V; called direction numbers. In Sobol’s original method, the j-th
number X is generated by the operation XOR among those direction numbers V; such that the i-th bit of j is not zero,
see comments below. See DiscSobol for additional discussion.

13.58.2 Detailed description of the procedure

The ¢-th number in Sobol’s sequence is
2 = @ b (i)v,
j=1

where b;(7) is the j-th digit of the binary expansion of i; v; is the j-th direction number and & is the binary (bitwise)
XOR operation. The number b, (¢) is a bit and thus it only takes values 0 or 1, i.e. for an integer ¢ we have its binary
expansion

i= b;(i)27"
j=1

As for any finite number i, its binary expansion has a finite number of non-zero digits, the Sobol’s number is computed
with a XOR sum of a finite number of direction numbers and thus no convergence properties are needed in the above
equations.

An important element in Sobol’s sequence are the direction numbers. The direction numbers are binary (dyadic)
fractions v; € (0, 1) and the resulting Sobol’s number is also a binary fraction z; € (0, 1). The direction numbers are
represented as

.y
=

Vi =5

where m; takes integer values, 1 < m; < 27, i.e. the direction number v; is a shift of the binary digits in m;. The

direction numbers are computed by the recursive relation

d
k
mj = (@2 akmj_k> @mj_d,
k=1

where the initial values mg, ..., my are odd integers and the numbers ag, a1, ..., aq are given by the coefficients of
pa(z), a primitive polynomial of degree d in Z,, which is written as

d
pa(z) = Z apzd=k,
k=0

Recall that a primitive polynomial is a polynomial that cannot be represented as the product of two polynomials of
lower degree. Primitive polynomials are available in tables in the literature, see Press et al. (1994). For a primitive
polynomial, the numbers ay and a4 take the value one by definition, and ag is not used in the computations.

164 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

13.58.3 Running example

In what follows, the subindex , refers to binary numbers, everywhere else usual representation (base ten) is assumed.

Take the primitive polynomial p3(z) = 2® + 2 + 1, and thus d = 3 and (ag, a1, az,az) = (1,0, 1, 1). The recurrence
relation for the direction numbers is

m; = 2a1mj_1 ©® 4a2mj_2 D 8a3mj_3 ©® m;_3
= 4mj_2 57 8mj_3 57 m;—3

Using a different primitive polynomial will give a different recurrence relation. To iterate the recurrence relation,
initial odd values m1, mo, ms are needed. Take m; = 1,mo =3, m3 = 7.

Now we compute a few extra numbers m;. We have

my =4@)es8(l)@l=1208a1
= 1100, ® 1000, ® 15 = 101 = 5

and
ms=28024P3 =111, =1"1.

The direction numbers are computed by shifting the values obtained, e.g.

1
v = 5 = 012
3
Vg = 1 =0.11,
7
V3 = g = 0.1112
5
= — =0.0101
T 16 2
and
7

vy = 33 = 0.00111,.
The first Sobol’s number is obtained with the first direction number
x1 =1(v1) =v; = 0.1 = 0.5.
As the binary expansion of two is 10, then
2o = 1(v2) ®0(v1) = vy = 0.11, = 0.75
and
3 = v; D ve = 0.012 = 0.25.

The following table summarises the construction performed, with the Sobol’s sequence on the two rightmost columns,
the next to last in binary and the last in base ten.

i,7(10) | 4,4 m;(10) | m; | v; x5 x;(10)
1 1 1 1 1 1 5

2 10 3 11 11 A1 75
3 11 7 111 | 111 .01 25
4 100 5 101 | .0101 11 .875
5 101 7 111 | .00111 | .011 375
6 110 .001 125

7 111 101 .625

8 1000 0101 | .3125

9 1001 1101 8125

10 1010 1001 | .5625

13.58. Procedure: Generating a Sobol’s Sequence 165

Multi-Output GP Emulator Documentation, Release 0.6.0

13.58.4 Additional Comments, References and Links

It is important to note that for the first Sobol’s number, only the first direction number was needed; then for the
following two Sobol’s numbers the second direction number was included; for the following four Sobol’, the third
direction number was included. Without iterating again the recursive relation, 31 Sobol’s numbers can be constructed
using the first five direction numbers in the above table.

In short, to construct the first 2¥ — 1 Sobol’s numbers, we need k direction numbers. If more Sobol’s numbers are
needed, then the recursive equation must be iterated to obtain direction numbers as required.

Note that by selecting odd initial values my, ..., mgq, all the subsequent m g1, mg442,... are guaranteed to be odd
numbers and thus the i-th bit of the direction number v; is one. This has the important consequence of allowing Sobol’s
numbers to lie in consecutive finer binary meshes. In other words, a latin hypercube is constructed with the first 2% — 1
Sobol’s points.

The construction of multivariate Sobol’s sequences is achieved by using different primitive polynomials for each
dimension. For a table with different primitive polynomials see Press et al. (1994). Sobol’s gave a list of recommended
primitive polynomials, to avoid high correlations between different dimensions.

An alternative version of Sobol’s sequence was due to Antonov and Saleev, who proposed taking instead
(o]
T = @ 9;(i)v;
=1

where g;(4) is the j-th digit of the Gray code representation of i. This different Sobol’s proposal is faster than the
original, as it simplifies the computation to x; 11 = x; & v., where b, is the rightmost zero bit in the representation of
i.

References:

Antonov, Saleev (1979). USSR Comput. Math. Math. Phys. 19, 252-256.

Bratley, Fox (1988), ACM Trans. Math. Soft. 14(1), 88-100.

Press et al. (1994). Numerical Recipes in C, Cambridge.

13.59 Procedure: Uncertainty Analysis for a Bayes linear emulator

13.59.1 Description and Background

One of the tasks that is required by users of simulators is uncertainty analysis (UA), which studies the uncertainty
in model outputs that is induced by uncertainty in the inputs. Although relatively simple in concept, UA is both
important and demanding. It is important because it is the primary way to quantify the uncertainty in predictions made
by simulators. It is demanding because in principle it requires us to evaulate the output at all possible values of the
uncertain inputs. The MUCM approach of first building an emulator is a powerful way of making UA feasible for
complex and computer-intensive simulators.

This procedure considers the evaluation of the expectaion and variance of the computer model when the input at which
it is evaluated is uncertain. The expressions for these quantities when the input x takes the unknown value x are:

w=E[f(x0)] = E*[s(x0)]
and
¥ = Var[f(zo)] = Var*[u(zo)] + E*[2(z0)]

where expectations and variances marked with a * are over the unknown input x(, and where we use the shorthand
expressions p(x) = Ep[f(x)] and X(z) = Varp[f(z)].

166 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

13.59.2 Inputs

* An emulator
* The prior emulator beliefs for the emulator in the form of Var[53], Var[w(x)]
* The training sample design X

¢ Second-order beliefs about x

13.59.3 Outputs

* The expectation and variance of f(x) when x is the unknown x¢

13.59.4 Procedure
Definitions

Define the following quantities used in the procedure of predicting simulator output at a known input (ProcBLPredict):
« 3 =Ep[f]
e B = Var[g]
s 02 = Var[w(z)]
* V = Var[f(X)]
- = f(X) ~ E[f(X)]
e Brp = Varp[ﬂ] =B - BHV-'HTBT
where f(z), 5 and w(x) are as defined in the thread for Bayes linear emulation of the core model (ThreadCoreBL).

Using these definitions, we can write the general adjusted emulator expectation and variance at a known input x (as
given in ProcBLPredict) in the form:

w(z) = BT h(z) + c(z)V e
Y(z) = h(z)T Bph(z) + 0% — c(x)TVte(x) — h(z)TBHV ~te(x) — c(z)TVLHT Bh(z)

where the vector h(z) and the matrix H are as defined in ProcBLPredict, c(z) is the n x 1 vector such that c¢(z)? =
Cov]w(z), w(X)], and B is the adjusted variance of the (3.

To obtain the expectation, u, and variance, X, for the simulator at the unknown input xy we take expectations and
variances of these quantities over x as described below.

Calculating 1
To calculate p, the expectation of the simulator at the unknown input x(, we calculate the following expectation:
i =Elu(zo)] = BT Elho] + Eleo] "V,

where we define hg = h(xg) and ¢ = Cov]w(zg), w(X)].

Specification of beliefs for hg and c, is discussed at the end of this page.

13.59. Procedure: Uncertainty Analysis for a Bayes linear emulator 167

Multi-Output GP Emulator Documentation, Release 0.6.0

Calculating >

¥ is defined to be the sum of two components Var[p(zg)] and E*[X(x0)]. Using hg and ¢ as defined above, we can
write these expressions as:

Var[u(zo)] = BT Var[ho) 3 + €TV~ Var[co] TV e + 23T Cov[ho, co] V" te
E[2(x0)] = 0 + E[ho)" BrE[ho] — Elco]" V" E[co] — 2E[ho)T BHV " E|co]
+ tr { Var[hg] Bp — Var[co]V " — 2Cov[ho, co]V 'H" B}

Beliefs about ¢, and ¢

We can see from the expressions given above, that in order to calculate i and o, we require statements on the expecta-
tions, variances, and covariances for the collection (hg, ¢g). In the Bayes linear framework, it will be straightforward
to obtain expectations, variances, and covariances for o however since hy and cy are complex functions of x it can
be difficult to use our beliefs about x(to directly obtain beliefs about hg or cg.

In general, we rely on the following strategies:

* Monomial A(-) — When the trend basis functions take the form of simple monomials in ¢, then the expectation,
and (co)variance for h(can be expressed in terms of higher-order moments of xy and so can be found directly.
These higher order moments could be specified directly, or found via lower order moments using appropriate
assumptions. In some cases, where our basis functions h(-) are not monomials but more complex functions, e.g.
sin(z), these more complex functions may have a particular physical interpretation or relevance to the model
under study. In these cases, it can be effective to consider the transformed inputs themselves and thus h(-)
becomes a monomial in the transformed space.

» Exploit probability distributions — We construct a range of probability distributions for zy which are consistent
with our second-order beliefs and our general sources of knowledge about likely values of x5. We then compute
the appropriate integrals over our prior for z(to obtain the corresponding second-order moments either ana-
lytically or via simulation. When the correlation function is Gaussian, then we can obtain results analytically
for certain choices of prior distribution of x(— the procedure page on uncertainty analysis using a GP emulator
(ProcUAGP) addresses this material in detail.

13.60 Procedure: Uncertainty analysis for dynamic emulators

13.60.1 Description and Background

We describe an approximate method for quantifying uncertainty about dynamic simulator outputs given uncertainty
about the simulator inputs. For a general discussion of uncertainty analysis, see its definition page (DefUncertainty-
Analysis) and the procedure page for carrying out uncertainty analysis using a GP emulator (Proc UAGP). This method
is based on emulating the single step function, following the procedures described in the variant thread on dynamic
emulation (ThreadVariantDynamic).

We suppose that there is a true, but uncertain sequence of forcing inputs A1, ..., Ar and true values of the simulator
parameters ¢ and initial conditions W, corresponding to the modelling situation of interest. We denote the true values
of all these quantities by a vector X. Uncertainty about X is described by a joint probability distribution w(-). The
corresponding, uncertain sequence of state variables that would be obtained by running the simulator at inputs X
is denoted by W7, ..., Wr. The procedure we describe quantifies uncertainty about Wy, ..., Wr given uncertainty
about X.

168 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

13.60.2 Inputs

* An emulator for the single step function w; = f(w¢—1, at, @), formulated as a GP or t-process conditional on
hyperparameters, training inputs D and training outputs f (D).

o Aset {#(V, ... 05} of emulator hyperparameter values.

* A joint distribution w(-) for the forcing variables, initial conditions and simulator parameters

13.60.3 Outputs

* Approximate mean and variance for each of Wy,..., Wr

13.60.4 Procedure

We describe a Monte Carlo procedure with N defined to be the number of Monte Carlo iterations. For notational
convenience, we suppose that N < s. For discussion of the choice of N, including the case N > s, see the discussion
page on Monte Carlo estimation (DiscMonteCarlo).

1. Generate a random value of X from its distribution w(-). Denote this random value by X;

2. Given X;, and one set of emulator hyperparameters 6;, iterate the single step emulator using the ap-
proximation method described in the procedure page ProcApproximatelterateSingleStepEmulator to obtain
E[W,||f(D), X;,0®] and Var[W;|f(D), X;,0] for all ¢ of interest.

3. Repeat steps 2 and 3 N times and estimate E[W;| f(D)] and Var[W,|f(D)] b
E[W,|f(D ZE (Wil £(D), X;,01]

N
Var W (D ZVarWt\f (D). X,.09] + Z{ Wil F(D). X, 00) — E[W, (D))}

13.60.5 Additional Comments

Note that this procedure does not enable us to fully consider the two sources of uncertainty (uncertainty about inputs
and uncertainty about the simulator) separately. (See the discussion page on uncertainty analysis (DiscUncertainty-
Analysis)). However, one term that is useful to consider is

N

ﬁ Z {E[wt|f(D), X;,00] - E[Wt|f(D)]}2 :

This gives us the expected reduction in our variance of W, obtained by learning the true inputs X . If this term is small
relative to Var[Wy|f(D)], it suggests that uncertainty about the simulator is large, and that more training runs of the
simulator would be beneficial for reducing uncertainty about W,.

13.61 Procedure: Uncertainty Analysis using a GP emulator

13.61.1 Description and Background

One of the simpler tasks that is required by users of simulators is uncertainty analysis (UA), which studies the un-
certainty in model outputs that is induced by uncertainty in the inputs. Although relatively simple in concept, UA is

13.61. Procedure: Uncertainty Analysis using a GP emulator 169

Multi-Output GP Emulator Documentation, Release 0.6.0

both important and demanding. It is important because it is the primary way to quantify the uncertainty in predictions
made by simulators. It is demanding because in principle it requires us to evaulate the output at all possible values of
the uncertain inputs. The MUCM approach of first building an emulator is a powerful way of making UA feasible for
complex and computer-intensive simulators.

This procedure describes how to compute some of the UA measures discussed in the definition page of Uncertainty
Analysis (DefUncertaintyAnalysis). In particular, we consider the uncertainty mean and variance:

E[f(X)] = /X f@)w(z)dz
Varf(X)] = /X (f(2) — Bl (2)]) 2w (z)dz

Notice that it is necessary to specify the uncertainty about the inputs through a full probability distribution for the
inputs. This clearly demands a good understanding of probability and its use to express personal degrees of belief.
However, this specification of uncertainty often also requires interaction with relevant experts whose knowledge is be-
ing used to specify values for individual inputs. There is a considerable literature on the elicitation of expert knowledge
and uncertainty in probabilistic form, and some references are given at the end of this page.

In practice, we cannot evaluate either E[f(X)] or Var[f(X)] directly from the simulator because the integrals require
us to know f(x) at every x. Even evaluating numerically by a Monte Carlo integration approach would require a very
large number of runs of the simulator, so this is one task for which emulation is very powerful. We build an emulator
from a limited training sample of simulator runs and then use the emulator to evaluate these quantities. We still cannot
evaluate them exactly because of uncertainty in the emulator. We therefore present procedures here for calculating
the emulator (i.e. posterior) mean of each quantity as an estimate; while the emulator variance provides a measure of
accuracy of that estimate. We use E* and Var™ to denote emulator mean and variance.

We assume here that a Gaussian process (GP) emulator has been built in the form described in the procedure page
for building a GP emulator (ProcBuildCoreGP), and that we are only emulating a single output. Note that ProcBuild-
CoreGP gives procedures for deriving emulators in a number of different forms, and we consider here only the “linear
mean and weak prior” case where the GP has a linear mean function, weak prior information is specified on the
hyperparameters 3 and o2 and the emulator is derived with a single point estimate for the hyperparameters d.

13.61.2 Inputs

¢ An emulator as defined in ProcBuildCoreGP

* A distribution w(- - -) for the uncertain inputs

13.61.3 Outputs

* The expected value E*[E[f(X)]] and variance Var*[E[f(X)]] of the uncertainty distribution mean

* The expected value E*[Var[f(X)]] of the uncertainty distribution variance

13.61.4 Procedure

In this section we describe the calculation of the above quantities. We first give their expressions in terms of a
number of integral forms, U, P,, Qp, Sp, U, T, R. We then give the form of these integrals for the general case when
no assumptions about the form of the distribution of the inputs w(X), correlation function ¢(X, X’) and regression
function ~(X') are made. Finally we give their forms for two special cases.

170 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

Calculation of E*[E[f(X)]]

where

Calculation of Var*[E[f(X)]]

Var*[E[f(X)]] = 6*[U — TAT'TT + (R—TAT'H)W(R - TA™'H)"]

where

W=H"ATH)™!

Calculation of E*[Var|[f(X)]]

E*[Var[f(X)]] = E*[E[f(X)?]] — E*[E[f(X)]?]
The first term is

E*[E[f(X)?] = (}2[Up — tr(Afle) +tr{W(Qp — SpA*IH - HTA*ISPT + HTAfleAle)}]
+eTPpe + QBTSpe + BTQPB

The second term is
E*E[f(X)])] =06*U-TA T +{R-TA'HIW{R-TA'H}"
R 2
+ (RB + Te)

Dimensions

Before describing the terms involved in the above expressions we first give their dimensions. We assume that we have
n observations, p inputs and q regression functions. The dimension of the above quantities are given in the table below.

Symbol | Dimension | Symbol | Dimension
o 1x1 U, 1x1
8 qgx1 P, nxn
e nx1 Sp qgxn
f nx1 Qp qxq
A nxn U 1x1
H n xq T 1xn
w qxq R 1xq

The terms 62, B, f(D), A and H are defined in ProcBuildCoreGP, while e and W are defined above. The terms in
the right hand column are inherent in uncertainty analysis and are described below.

13.61. Procedure: Uncertainty Analysis using a GP emulator 171

Multi-Output GP Emulator Documentation, Release 0.6.0

The integral forms

General case

When no assumptions are made about the distribution of the inputs, the correlation and the regression functions we
have general expressions for the Uy, P, Sp, Qp, U, R, T terms. These are

U, — /X oz, 2)w(x)dz

P, = /X Ha)t () w(z)de
S, = /X h(@)t(2) Tw(z)dz
p= | (o) wla)ds

h(x) is described in the alternatives page on emulator prior mean function (AltMeanFunction). c(-,-) is the correlation
function discussed in the alternatives page on emulator prior correlation function (AltCorrelationFunction).

Also t(z) = ¢(D, x), as introduced in ProcBuildCoreGP.
Finally, w(x) is the joint distribution of the x inputs.

For the U, R, T we have
U= /X /X ez, 2")w(x)w(z")dzda’
R:/Xh(z)Tw(a:)d:r
T:/Xt(:c)Tw(x)dm

where z and 2’ are two different realisations of z.

Special case 1

We now show how the above integrals are transformed when we make specific choices about w(+) ¢(, -) and h(-). We
first assume that w(-) is a normal distribution given by

! exp fl(x —m)TB(z —m)

w@) = G E 2

We also assume the generalised Gaussian correlation function with nugget (see AltCorrelationFunction)
c(x,2") = vy + (1 — v)exp{—(z — ") C(x — 2')}

where I,—,/ equals 1 if z = 2’ but is otherwise zero, and v represents the nugget term. The case of a generalised
Gaussian correlation function without nugget is simply obtained by setting v = 0.

We let both B, C be general positive definite matrices. Also, we do not make any particular assumption for h(z).

We now give the expressions for each of the integrals

U, =1

172 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

Note that this result is independent of the existence of a non-zero nugget v. See the discussion page on the nugget
effects in uncertainty and sensitivity (DiscUANugget) for more on this point.

P, is an n x n matrix, whose (k, 1)*" entry is

[F['72 2
with
F=4C+B
and
g =2C(zk + x — 2m)
and

r = (x, —m)"2C (x, —m) + (2, — m) 2C (x; — m)

The subscripts k and [of x denote training points.

S, is a ¢ x n matrix, whose (k, 1)*" entry is

1/2
S,00) = (1=) P exp {5 [= g"F] bl

|72 2
with
F=2C+B
and
g=2C(x; —m)
and

r=(x; —m) 20 (x; — m)

The expectation E, [-] is w.r.t. the normal distribution N'(m + F~tg, F~1). Also hy(x) is the k-th element of h(z).

Q) is a ¢ x ¢ matrix, whose (k, ()" entry is
Qs(k,1) = Eu[hi(2)h(x)")

where the expectation E,[-] is w.r.t. the normal distribution w(z)

U is the scalar

Bl
‘F‘I/Q

U=(1-v)

13.61. Procedure: Uncertainty Analysis using a GP emulator 173

Multi-Output GP Emulator Documentation, Release 0.6.0

with

Fo [204+ B —-2C]

-2C 2C+B

Risthe 1 x g vector with elements the mean of the elements of h(z), w.r.t. w(x), i.e.,

= IT(.AJJ:I
R—/Xh() (2)d

T is a1l x n vector, whose k" entry is

I L L G S
T(k) = 50 1 B2 exp) [r g F g]

with
F=2C+B
g=2C(zr, —m)

r = (xp —m)T2C(zx —m)

Special case 2

In this special case, we further assume that the matrices B, C' are diagonal. We also consider a special form for the
vector h(x), which is the linear function described in AlrMeanFunction

h(z) = [1,2]"

Hence ¢ = p + 1. We now present the form of the integrals under the new assumptions.

P, is an n x n matrix, whose (k, 1)*" entry is

B 1/2
Pk)= 1 =vPT, (o) oo {-bmtem
[4C% (@i, — m40)? + 2C; Byi { (@i, — mi)* + (zi — my)?}] }

where the double indexed x;;, denotes the i'" input of the k'" training data.

S, is an g x n matrix whose (k,)" entry is
Sp(k,1) = (1 = v)Ex[hg(2)]

B;/? 1 _2Cy;Bi;
[T (Ci 1Bz &P {*5 2C:+ B [(l‘u - WLi)Z]}

174 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

For the expectation we have

E.[hi(z)] =1
E,[hj1 ()] = 2uzidmiBi

50,4, for 7=1,2,...,p

@y is the ¢ X ¢ matrix,

U is the scalar

P 1/2
H <Bu +2 20”))

=1

Risthe 1 x q vector

R=[1,m7]

T is a 1 x n vector, whose k" entry is

P 1/2
1 2C; By 2
T T aa~ T b ik — 0
H 2sz+Bm 1/2 { 22022+Bn (xk m) }

z:l

13.61.5 References

The topic of eliciting expert judgements about uncertain quantities is dealt with fully in the book

O’Hagan, A., Buck, C. E., Daneshkhah, A., Eiser, J. R., Garthwaite, P. H., Jenkinson, D. J., Oakley, J. E. and Rakow,
T. (2006). Uncertain Judgements: Eliciting Expert Probabilities. John Wiley and Sons, Chichester. 328pp. ISBN
0-470-02999-4.

For those with limited knowledge of probability theory, we recommend the SHELF package (disclaimer), which
provides simple templates, software and guidance for carrying out elicitation.

Oakley, J.E., O’Hagan, A., (2002). Bayesian Inference for the Uncertainty Distribution of Computer Model Outputs,
Biometrika, 89, 4, pp.769-784.

13.61.6 Ongoing work

We intend to provide procedures relaxing the assumption of the “linear mean and weak prior” case of ProcBuild-
CoreGP as part of the ongoing development of the toolkit.

13.61. Procedure: Uncertainty Analysis using a GP emulator 175

http://tonyohagan.co.uk/shelf/

Multi-Output GP Emulator Documentation, Release 0.6.0

13.62 Procedure: Uncertainty analysis for a function of simulator
outputs using multiple independent emulators

13.62.1 Description and Background

Where separate, independent emulators have been built for different simulator outputs, there is often interest in some
function(s) of those outputs. In particular, we may wish to conduct uncertainty analysis on a function of the outputs.
We assume that, whatever method was used to build each emulator the corresponding toolkit thread also describes how
to compute uncertainty analysis for that output alone.

If the function of interest is denoted by fy(x), then for uncertainty analysis we regard the input vector x as a random
variable X having a probability distribution w(x) to describe our uncertainty about it. Then uncertainty analysis
involves characterising the probability distribution of f(X) that is induced by this distribution for X . This distribution
is known as the uncertainty distribution. In particular, we are often interested in the uncertainty mean and and variance

My = E[fo(X)] = /X fol) w(z) da
and
Vo = Varlfo(X)] = [(foe) = Mo (o) .

The traditional way to compute these quantities is by Monte Carlo methods, drawing many random values of z from its
distribution w(x) and running the simulator(s) at each sampled input vector to compute the resulting values of fo(x),
which then comprise a sample from the uncertainty distribution. Then for instance M, may be estimated by the mean
of this sample. The accuracy of this estimate may be quantified using its standard error, which can in principle be
made small by taking a very large sample. In practice, this approach is often impractical and in any case the MUCM
approach using emulators is generally much more efficient.

The estimate of My is its emulator (posterior) mean, which we denote by E*[Mj], while accuracy of this estimate is
indicated by the emulator variance Var*[Mp]. Similarly, the emulator mean of Vp, E*[Vp], is the MUCM estimate of
Vo.

The individual emulators may be Gaussian process (GP) or Bayes linear (BL) emulators, although some of the specific
procedures given here will only be applicable to GP emulators.

13.62.2 Inputs

* Emulators for r simulator outputs f,(z),u =1,2,...,7
* A function fy(z) of these outputs for which uncertainty analysis is required

* A probability distribution w(.) for the uncertain inputs

13.62.3 Outputs

» Estimation of the uncertainty mean M, the uncertainty variance V|, or other features of the uncertainty distri-
bution.

13.62.4 Procedures

176 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

Linear case

The simplest case is when the function fy(x) is linear in the outputs. Thus,

f()(x) =a+ Z bufu(x)v
u=1

where a and by, bs, ..., b, are known constants. In the linear case, the emulator mean and variance of M, may be
computed directly from uncertainty means and variances of the individual emulators, and the emulator mean of Vj
requires only a little extra computation.

Let the following be the results of uncertainty analysis of f,(X),w =1,2,...,r, where X has the specified distribu-
tion w(x).

* E*[M,], the emulator mean of the uncertainty mean M,,,
* Var*[M,], the emulator variance of M, and
» E*[V,], the emulator mean of the uncertainty variance V.

Then

E*[Mo] = b,E*[M,],
u=1
Var™ [My] = Z b2 Var*[M,,],
u=1

E*[Vp] = Z b,
u=1

textrmE*[V,] +2 > (Fuw — E*[M,]E*[M,)).

u<w

The only term in the above formulae that we now need to consider is

Fao= [B @I @) w() do

For general emulator structures, this can be evaluated very easily and quickly by simulation. We simply draw many
random input vectors x from the distribution w(z) and in each case evaluate the product of the emulator (posterior)
means of the two outputs at the sampled input vector. Given a sufficiently large sample, we can equate F,,, to
the sample mean of these products. Note that this Monte Carlo computation does not involve running the original
simulator(s), and so is typically computationally feasible.

We can do better than this in a special case which arises commonly in practice.

Special case

Suppose that for each v = 1,2, ..., r, the emulator of f,(x) is a GP emulator built using the procedures of the core
thread ThreadCoreGP and with the following specifications:

1. Linear mean function with basis function vector h,, (z).
2. Weak prior information about the hyperparameters 3 and o2

Furthermore, suppose that the distribution w is the (multivariate) normal distribution with mean (vector) m and preci-
sion matrix (the inverse of the variance matrix) B.

13.62. Procedure: Uncertainty analysis for a function of simulator outputs using multiple 177
independent emulators

Multi-Output GP Emulator Documentation, Release 0.6.0

The emulator will in general include a collection of M sets of values of the correlation hyperparameter matrix B. We
present below the computation of F},,, for given B, which is therefore the value if M = 1. If M > 1 the M resulting
values should be averaged.

Let A, cu(z) and e,, be the B, ¢(x) and e vectors for the u-th emulator as defined in the procedure pages for building
the GP emulator (ProcBuildCoreGP) and carrying out uncertainty analysis (ProcUAGP). Then

Fuw = BEQuwﬂAw + B?;Suwew + Bgswueu + egpuwewy

where the matrices (Q,.,, Suw and P, are defined as follows:

= X Z‘TWJ? X
QW—A%UMU (2) da,

= €T)cC ITw:E X
Suwf/Xhu() ew(@)T w(z) da,

= C,y, () C QTTOJJ? xZ.
m~Aa>u><m

Notice that elements of @Q,,,, are just expectations of products of basis functions with respect to the distribution w(x),
and will usually be trivial to compute in the same way as the matrix @), in ProcUAGP. Indeed, if all the emulators
are built with the same set of basis functions then @, is the same for all u,w and equals the (), matrix given in
ProcUAGP.

Similarly, the matrix .S, is the same as the matrix S, in ProcUAGP (for the w-th emulator) except that instead of its
own basis function vector we have the vector h,, () from the other emulator. If they have the same basis functions,
then S, is just the S, matrix for emulator w.

Hence it remains only to specify the computation of P,,,. This will of course depend on the form of the correlation
functions used in building the two emulators.

First suppose that each emulator is built with a generalised Gaussian correlation function (see the alternatives page on
emulator prior correlation function (AlrCorrelationFunction)) which we write for the u-th emulator as

exp{(z —)T D, (z — 2)}.
Then the (k, ¢) element of F,,, is
F¥ = |B|'/22D,, + 2D,, + B|""/*exp(—g/2),

where

g= 2(m* —)T Dy(m* — 1) + 2(m* — 20)T Dyy(m* — x)
+(m* —m)TB(m* —m)

and
m* = (2D, + 2D, + B) "' (2D, z), + 2Dz + Bm).

Although the generalised Gaussian correlation structure is sometimes used, it is more common to have the simple
Gaussian correlation structure in which each D,, is diagonal. If B is also diagonal (so that the various inputs are
independent) then the above formulae simplify further.

Simulation-based computation

For GP emulators we have the option of computing uncertainty analysis quantities by simulation-based methods. We
generate a large number N of realisations from each of the r emulators, using the approach of the procedure page
ProcSimulationBasedInference. For each set of realisations, we compute the desired uncertainty analysis property Z;

178 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

for instance Z might be My, Vj or the probability that fo(X) exceeds some threshold. This computation is simply done
by Monte Carlo. We then have a sample of values from the posterior distribution of Z, from which for instance we
can compute the emulator mean as an estimate of Z and the emulator variance as a summary of emulator uncertainty
about Z.

A formal description of this procedure is as follows.
1. Fors=1,2,...,N:
1. Draw random realisations flss) (z),s=1,2,...,r, from the emulators
2. Draw a large sample of random z values from the distribution w(x)
3. For each such z, compute f{*) () from the £{*(x:) values
4. Compute Z*) from the f () values

2. From this large sample of Z(*) values, compute the emulator mean and variance, etc.

13.63 Procedure: Recursively update the dynamic emulator mean
and variance in the approximation method

13.63.1 Description and Background

This page is concerned with task of emulating a dynamic simulator, as set out in the variant thread on dynamic
emulation (7ThreadVariantDynamic).

The approximation procedure described in page ProcApproximatelterateSingleStep Emulator recursively defines
pe1 = E[m*(wy, ay1, 9)[f (D), 0]

Vit1 = E[o"{(w, ar41, 9), (Wi, a1, 9) } f(D), 0] + Var[m™ (wr, a1, ¢) (D), 0]

where the expectations and variances are taken with respect to w;, with w; ~ N,.(u, Vi). Here, we show how
to compute p;41 and Viy; in the case of a single step emulator linear mean and a separable Gaussian covariance
function.

To simplify notation, we now omit the constant parameters ¢ from the simulator inputs. (We can think of ¢ as an extra
Jorcing input that is constant over time).

13.63.2 Inputs

e uy and V;
* The single step emulator training inputs D and outputs f (D)

* Emulator covariance function parameters B and X (defined below).

13.63.3 Outputs

* pyy1 and Vi

13.63. Procedure: Recursively update the dynamic emulator mean and variance in the 179
approximation method

Multi-Output GP Emulator Documentation, Release 0.6.0

13.63.4 Notation

. T T
z: ap X 1 input vector (a:(“’) , (@))T, with z(®) the corresponding 7 x 1 vector state variable input, and (%) the
corresponding (p —) X 1 vector forcing variable input.

h(z() 2(®)) = h(z) = (127)T: the prior mean function.

Ye(z,2') = Lexp{—(z — 2’)T B(x — 2’)}: the prior covariance function, with
3: the covariance matrix between outputs at the same input x, and

B: a diagonal matrix with (i, j)'"" element 1/62.

B,,: the upper-left r x r submatrix of :math:‘ B*.

B,: the lower-right (p — r) X (p — r) submatrix of B.

D: the set of training data inputs z1, ..., n.

c{(z™),2(9)) D} = ¢(x, D): ann x 1 vector with i'" element ¢(z, z;).

A: an n x n matrix with (4, 7)*" element c(z;, ;).

H:ann x (r+ 1) matrix with 7*® row h(z;)T.

f(D): an n x r matrix of training outputs with (4, j)'" element the j** training output type for the i*" training input.
B=(HTA'H)""HT A1 f(D).

Ouxp: an a X b matrix of zeros.

13.63.5 Procedure

A series of constants need to be evaluated in the following order. Terms defined at each stage can be evaluated
independently of each other, but are expressed in terms of constants defined at preceding stages.

Stage 1: compute Ky, Kpe, Kgn, Kpwe and Kg,.

O1x1 017 015 (p—r)
Kyp = Var[h(wtv at-‘rl)‘f(D)a B] = 0p><1 Vi Opx(p—r) 5
Op—r)x1 Op—r)xr O@p—r)x(p—r)

Kg. = E[c{(w¢,at41), D} f(D), B], an n x 1 vector, with element 4 given by

2ViBy + L7 exp{—(aps1 — I(‘a))TBa(at—i-l - cha))}

3

x exp{— (e — ") T2V, + Byh) " (e — 1))}

Kgn = E[h(wt»at+1)|f(D)vB] = (1’M?aa31+1)T

180 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

Kgwe = Elwie{(wg, az11), D}YT|f(D), B] , an 7 x n matrix, with column ¢ given by
Blueel{un,avsih 20|/ (D), B) = [2ViBu + L7 x exp{~ (a1 — &))" Ba(arss — 2,”))
X exp {_(Nt — "N (2Vi + Bt) ™ (e — wgw))} X (2B, + V)T 2Buat) + Vi).

Kgee = E[c{(ws,as41), DYce{(we,ar 1), DY |f(D), B, an n x n matrix, with element 4, j given by

?

1 w w w
Ble({wr, ar1}, wi)e({wr, ara}, ;)| (D). B = |4szw+zr|-1/2exp{—2<w< P =) Bua” -)>}

x exp{—(as+1 — %(-a))TBa(atH - xga)) — (a1 — xﬁ"’)T alarr — @ a))}
r 1 -t 1
o | oo g e} (i o) e)

Stage 2: ComPUte KCu;c-, KEhhv and KVC

Kch = Cov[wt,c{(wt, at-‘rl)a D}'f(D)a B] = KEwc - ,utKgc

Kgnn = Eh(we, age1)h(we, ar1)” | (D), Bl = Ky + KpnKE),

KVC = Var[c{(whatJrl)a D}|f(D)7 B] = KEcc - KEchc

Stage 3: compute K¢,
Kcone = Covlh(wy, asi1), c{(wy, azq1), DY f(D), B] = (Kcwe)

Stage 4: compute Kg;. and Ky,

Kgne = E[h(wy, agi1)c{(wy, ar1), DY | f(D), B] = Kcne + KpnKf,

Ky = Var[m*(wy, ag41)|f(D), Bl = BT Ky + BT Kene A (f(D) — HP)
+(f(D) = HB) K&y B + (F(D) — HB)" A Ky A (f(D) — HB

Stage 5: compute Kg,

Kg, = Ev* {(ws, ars1), (0, a:01) (D), Bl =1 —tr[{A™ — A" HHTA H) "HT A~ Y K.
+tr[(HTAT H) ' Kgpp) — 2tt[A P HHT AT H) K.

13.63. Procedure: Recursively update the dynamic emulator mean and variance in the 181
approximation method

Multi-Output GP Emulator Documentation, Release 0.6.0

Stage 6: compute the procedure outputs ;1 and V;

per1 = Kpnfp + K5 A™Y(f(D) — HB)
V;H-l = KVm + KE’UE

13.63.6 Reference

Conti, S., Gosling, J. P,, Oakley, J. E. and O’Hagan, A. (2009). Gaussian process emulation of dynamic computer
codes. Biometrika 96, 663-676.

13.64 Procedure: Validate a Gaussian process emulator

13.64.1 Description and Background

Once an emulator has been built, under the fully Bayesian Gaussian process approach, using the procedure in page
ProcBuildCoreGP, it is important to validate it. Validation involves checking whether the predictions that the emulator
makes about the simulator output accord with actual observation of runs of the simulator. Since the emulator has been
built using a rraining sample of runs, it will inevitably predict those correctly. Hence validation uses an additional set
of runs, the validation sample.

We describe here the process of setting up a validation sample, using the validation data to test the emulator and
interpreting the results of the tests.

We consider here an emulator for the core problem, and in particular we are only concerned with one simulator output.

13.64.2 Inputs

* Emulator, as derived in page ProcBuildCoreGP.

¢ The input configurations D = {x1,z2,...,2,} at which the simulator was run to produce the training data
from which the emulator was built.

13.64.3 Outputs

¢ A conclusion, either that the emulator is valid or that it is not valid.

* If the emulator is deemed not valid, then indications for how to improve it.

13.64.4 Procedure

The validation sample

The validation sample must be distinct from the training sample that was used to build the emulator. One approach
is to reserve part of the training data for validation, and to build the emulator only using the rest of the training
data. However, the usual approach to designing a training sample (typically to use points that are well spread out,
through some kind of space-filling design, see the alternatives page on training sample design (AltCoreDesign)) does
not generally provide subsets that are good for validation. It is preferable to develop a validation sample design after
building the emulator, taking into account the training sample design D and the estimated values of the correlation
function hyperparameters §.

182 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

Validation sample design is discussed in page DiscCoreValidationDesign. We denote the validation design by D’ =
{z, 2z}, ..., 2, }, with n’ points. The simulator is run at each of the validation points to produce the output vector
f(D) = (f(zh), f(xh),... f(z!)T), where f(x;) is the simulator output from the run with input vector z’.

n
We then need to evaluate the emulator’s predictions for f(D’). For the purposes of our diagnostics, it will be enough
to evaluate means, variances and covariances. The procedure for computing these moments is given in the procedure
page for predicting simulator outputs (ProcPredictGP). The procedure is particularly simple in the case of a linear
mean function, weak prior information on hyperparameters 3 and o2, and a single posterior estimate of &, since then
the required moments are simply given by the functions m*(-) and v*(-, -) given in ProcBuildCoreGP (evaluated at the
estimate of §). In fact, where we have a linear mean function and weak prior information on the other hyperparameters,
it is recommended that only a single estimate of ¢ is computed prior to validation. If the validation tests declare the
emulator to be valid, then it may be worthwhile to go back and derive a sample of ¢ values for subsequent use.

/
VR

;). We let m* be the mean vector (m*(x}), m*(x5),...,m*(x],))"

We denote the predictive means and covariances of the validation data by m*(z;) and v*(z

predictive variance of the j-th point is v* (a7,

and V* be the covariance matrix with (7, j*)-th element v* (27, 27,).

x;.,), noting that the

Possible causes of validation failure

Before presenting the diagnostics it is useful to consider the various ways in which an emulator may fail to make
valid predictions. Although the GP is a very flexible way to represent prior knowledge about the computer model,
the GP emulator can give poor predictions of simulator outputs for at least two basic reasons. First, the assumption
of particular mean and correlation functions may be inappropriate. Second, even if these assumptions are reasonable
there are various hyperparameters to be estimated, and a bad or unfortunate choice of training dataset may suggest
inappropriate values for these parameters. In the case of the correlation function parameters J, where we condition on
fixed estimates, we may also make a poor choice of estimate.

If the assumed form of the mean function is wrong, for instance because inappropriate regressors have been used in a
linear form (see the alternatives page on emulator prior mean function (Al/tMeanFunction)), or if the hyperparameters
[have been poorly estimated, then the emulator predictions may be systematically too low or too high in some regions
of the input space.

In the various forms of correlation function considered in the discussion page on GP covariance function (DiscCo-
varianceFunction), and in the alternatives page on emulator prior correlation function (AltCorrelationFunction) all
involve stationarity, implying that we expect the simulator output to respond with similar degrees of smoothness and
variability at all points in the input space. In practice, simulators may respond much more rapidly to changes in the
inputs at some parts of the space than others. In case of such non-stationarity, credible intervals of emulator predictions
can be too wide in regions of low responsiveness or too narrow in regions where the response is more dynamic.

Finally, although the form of the correlation function may be appropriate, we may estimate the parameters o2 and &
poorly. When we have incorrect estimation of the variance (o2), the credible intervals of the emulator predictions are
systematically too wide or too narrow. Poor estimation of the correlation parameters (9) leads to credible intervals that
are too wide or too narrow in the neighbourhood of the training data points.

Validation diagnostics

We present here a basic set of validation diagnostics. In each case we present the diagnostic itself and a reference
probability distribution against which the observed value of the diagnostic should be compared. If the observed value
is extreme relative to that distribution, i.e. it is far out in one or other tail of the reference distribution, then this indicates
a validation failure. It is a matter of judgement how extreme a validation diagnostic needs to be before declaring a
validation failure. It is common to use the upper and lower 5% points of the reference distribution as suggestive of a
failure, with the upper and lower 0.1% points corresponding to clear evidence of failure.

We discuss the implications and interpretations of each possible validation failure and the extent to which these should
lead to a decision that the emulator is not valid.

13.64. Procedure: Validate a Gaussian process emulator 183

Multi-Output GP Emulator Documentation, Release 0.6.0

Reference distributions are approximate, but the approximations are good enough for the purposes of identifying
validation failures.

Mahalanobis distance

The Mahalanobis distance diagnostic is
M = (f(D") —m*)"(V*)"H(f(D') = m”).

The reference distribution for M is the scaled F-Snedecor distribution with n’ and (n — ¢) degrees of freedom, where
q is the dimension of the h(+) function. The mean of this reference distribution is

E[M]=n'
and the variance is

1! o
Var[M]:2n(n +n—q—2)

n—q—4

M is ameasure of overall fit. If too large it suggests that the emulator is over-confident, in the sense that the uncertainty
expressed in V* is too low compared to the observed differences between the observed f(D’) and the predictive means
m*. This in turn may suggest poor estimation of /3, under-estimation of o2 or generally over-estimated correlation
length parameters 4.

Conversely, if M is too small it suggests that the emulator is underconfident, which in turn suggests over-estimation
of 02 or generally under-estimated correlation length parameters.

An extreme value of this diagnostic should be investigated further through the following more targeted diagnostics.
Whilst a moderate value of M generally suggests that the emulator is valid, it is prudent to engage anyway in these
further diagnostic checks, because they may bring out areas of concern.

Individual standardised errors

The individual standardised errors are, for j = 1,2,...,n/,
@) -m @)
7 * / / ’
v* (@, o)

Each of these is a validation diagnostic in its own right with reference distribution the standard normal distribution,
N(0,1). When comparing with the reference distribution, it is important to remember that we are making many tests
and if n’ is large enough then we certainly expect some moderately extreme values by pure chance even if the emulator
is valid. We are therefore looking for individual very extreme values (larger than 3 in absolute value, say) or patterns
of extreme values.

Isolated very extreme e; values suggest a local irregular behaviour of the simulator in the region of x; Clusters
of extreme values whose input values xg lie in a particular region of the input space suggest non-stationarity of the
simulator in that region.

If large values tend to correspond to x; values close to training sample design points this suggests over-estimation
of correlation lengths. It should be noted that groups of unusually small values of e; close to training sample design
points suggest under-estimation of correlation lengths.

It is important to note, however, that the e; values are not independent, and this makes interpretation of apparent pat-
terns of individual errors difficult. The next group of diagnostics, the pivoted Cholesky errors, are the most promising
of a number of ways to generate independent standardised errors.

184 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

Pivoted Cholesky errors

The well-known Cholesky decomposition of a positive-definite matrix yields a kind of square-root matrix. In our
diagnostics we use a version of this called the pivoted Cholesky decomposition. The procedure for this is given in
page ProcPivotedCholesky. Let C be the pivoted Cholesky decomposition of V* and let

t=C " (f(D) —m").

Then we consider each of the individual elements ¢;, of this vector to be a validation diagnostics, for k = 1,2,...,n'.
The reference distribution for each ¢;, is standard normal.

A property of the pivoted Cholesky decomposition is that each ¢ is associated with a particular validation sample
value, but the ordering of these diagnostics is different from the ordering of the validation dataset. Thus, for instance,
the first diagnostic ¢; will not generally correspond to the first validation data point z}. The ordering instead assists
with identifying particular kinds of emulator failure.

Extreme values of t;, early in the sequence (low k) suggest under-estimation of o2, while if the values early in the
sequence are unusually small then this suggests over-estimation of o2. When these extremes or unusually low values
cluster instead at the end of the sequence (high k) it suggests over-/under-estimation of correlation lengths.

Response to diagnostics

If there are no validation failures, or only relatively minor failures, we will generally declare the emulator to be valid.
This does not, of course, constitute proof of validity. Subsequent usage may yet uncover problems with the emulator.
Nevertheless, we would proceed on the basis that the emulator appears to be valid. In practice, it is rare to have
no validation failures - local inhomogeneity of the simulator’s behaviour will almost always lead to some emulation
difficulties. Declaring validity when minor validation errors have arisen is a pragmatic decision.

When failures cannot be ignored because they are too extreme or too numerous, the emulator should not be used as it
stands. Instead, it should be rebuilt with more data. Changes to the assumed mean and correlation functions may also
be indicated.

Rebuilding with additional data is, in one sense at least, straightforward since we have the validation sample data
which can simply be added to the original training sample data. We now regard the combined data as our training
sample and proceed to rebuild the emulator. However, it should be noted that we will need additional validation data
with which the validate the rebuilt emulator.

Also, the diagnostics may indicate adding new data in particular regions of the input space, if problems have been
noted in those regions. Problems with the correlation parameters may suggest including extra training data points that
are relatively close to either the original training data points or the validation points.

13.64.5 Additional Comments

These diagnostics, and some others, were developed in MUCM and presented in

Bastos, L. S. and O’Hagan, A. (2008). Diagnostics for Gaussian process emulators. MUCM Technical Report 08/02.
(May be downloaded from the MUCM website.)

Validation is something of an evolving art. We hope to extend the discussion here as we gain more experience in
MUCM with the diagnostics.

13.64. Procedure: Validate a Gaussian process emulator 185

http://mucm.group.shef.ac.uk/Pages/Dissemination/Dissemination_Papers_Technical

Multi-Output GP Emulator Documentation, Release 0.6.0

13.65 Procedure: Variance Based Sensitivity Analysis using a GP
emulator

13.65.1 Description

This page describes the formulae needed for performing Variance Based Sensitivity Analysis (VBSA). In VBSA we
consider the effect on the output f(X) of a simulator as we vary the inputs X, when the variation of those inputs
is described by a (joint) probability distribution w(X'). This probability distribution can be interpreted as describing
uncertainty about the best or true values for the inputs, or may simply represent the range of input values of interest
to us. The principal measures for quantifying the sensitivity of f(X) to a set of inputs X, are the main effect, the
sensitivity index and the total effect index. We can also define the interaction between two inputs X; and X;. These
are described below.

Mean, main and interaction effects

Let w denote a subset of the indices from 1 to the number p of inputs. Let X, denote the set of inputs with indices in
w. The mean effect of a set of inputs X, is the function

This is a function of z,, showing how the simulator output for given z,,, when averaged over the uncertain values of
all the other inputs, varies with x,,.

The deviation of the mean effect M ;) (x(;}) of the single input X; from the overall mean,
Ii(zw) = E[f(X)l|zi] — E[f(X)].

is called the main effect of X;.

Furthermore, we define the interaction effect between inputs X; and X; to be

i gy (i, w5) = E[f(X)|wi, 5] = Liwi) — Ij(2;) — Blf (X)]

Sensitivity variance

The sensitivity variance V,,, describes the amount by which the uncertainty in the output is reduced when we are certain
about the values of the inputs X,,. That is,

Vi = Var[f(X)] — E[Var[f (X)|z]]
It can also be written in the following equivalent forms

Vio = VarE[f(X)[2u]] = BIELF(X) [,]?] - E[f(X)]?

Total effect variance

The total effect variance V., is the expected amount of uncertainty in the model output that would be left if we
removed the uncertainty in all the inputs except for the inputs with indices w. The total effect variance is given by

Vrw = E[Var[f(X)]s]]

where w denotes the set of all indices not in w, and hence x; means all the inputs except for those in z,,.

186 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

V. can also be written as
Vi = Var[f(X)] — V.

In order to define the above quantities, it is necessary to specify a full probability distribution for the inputs. This
clearly demands a good understanding of probability and its use to express personal degrees of belief. However,
this specification of uncertainty often also requires interaction with relevant experts whose knowledge is being used
to specify values for individual inputs. There is a considerable literature on the elicitation of expert knowledge and
uncertainty in probabilistic form, and some references are given at the end of the procedure page for uncertainty
analysis (ProcUAGP) page.

We assume here that a Gaussian process (GP) emulator has been built according to the procedure page ProcBuild-
CoreGP, and that we are only emulating a single output. Note that ProcBuildCoreGP gives procedures for deriving
emulators in a number of different forms, and we consider here only the “linear mean and weak prior” case where the
GP has a linear mean function, weak prior information is specified on the hyperparameters 3 and o2 and the emulator
is derived with a single point estimate for the hyperparameters 9.

The procedure here computes the expected values (with respect to the emulator) of the above quantities.

13.65.2 Inputs

* An emulator as defined in ProcBuildCoreGP
* A distribution w(-) for the uncertain inputs

» A set w of indices for inputs whose average effect or sensitivity indices are to be computed, or a pair {i,j} of
indices defining an interaction effect to be computed

* Values z,, for the inputs X, or similarly for X;, X;

13.65.3 Outputs

My (xw)}
* E" [5y (24, 25)]
]

. Ve
VT w]

E*|
E*[
E*|
. E*[

where E*[-] denotes an expectation taken with respect to the emulator uncertainty, i.e. a posterior mean.

13.65.4 Procedure

In this section we provide the formulae for the calculation of the posterior means of My, (2w), I(; 1 (%,), Vi and
V.. These are given as a function of a number of integral forms, which are denoted as U, P, Sy, Qw, Ry and Ty,.
The exact expressions for these forms depend on the distribution of the inputs w(-), the correlation function ¢(., .) and
the regression function A(-). In the following section, we give expressions for the above integral forms for the general
and two special cases.

Calculation of E*[M,, ()]

E* [Mw(zw)] = RU}B + Tw€7
where e = A~1(f(D) — Hf3) and 3, A, f(D) and H are defined in ProcBuildCoreGP.

13.65. Procedure: Variance Based Sensitivity Analysis using a GP emulator 187

Multi-Output GP Emulator Documentation, Release 0.6.0

For the main effect of X; the posterior mean is
E*(I;(2:)] = {Rysy — R}B + {T(ay — The.
It is important to note here that both R,, and T}, are functions of x,,. The dependence on z,, has been suppressed here

for notational simplicity.

Calculation of E*[Iy; ;3 (i, 2;)]

E'lligy (@ 2j)l = ARy — Ry — Ryyy — RS
+ Ty — Ty — Ty — The
where Ry; ;1 and Ry;y, for instance, are special cases of R,, when the set w of indices comprises the two elements
w = {i, 7} or the single element w = {i}. Remember also that these will be functions of x(; ;3 = (z;,7;) and
Xy = x; respectively.

Calculation of E*[V,,]
We write the posterior mean of V,,, as
E*[V] = E*[E[E[f (X)]2y]*]] — E*[E[f(X))?]

The first term is

E*[E[E[f(X)|20]2]] = 62U — tr(A=1Py) + tr{ W (Qu — SwA~1H
CHTAUST 4 HY APy AV)]
+6T-Pwe + 2BTSwe + BTQwB

where 62 is defined in ProcBuildCoreGP.
The second term is
E*E[f(X)]?] =62[U—-TA T +{R-TA'H}W{R—-TA'H}"
. 2
+ (Rﬂ + Te)
with W = (HYA=1H)~L.

Calculation of E*[V7,,]

E*[Vry] can be calculated via the sensitivity variance Vi using the relation
E* (V] = B [Var[f(X)]] — E*[Vi]

with

E*[Var[f(X)]] = 6*[U -~ TA'TT + {R - TA'HIW{R - TA'H}"|

Dimensions

Before presenting the integral forms that appear in the above expressions, we give the dimensions of all the involved
quantities in the table below. We assume that we have n observations, p inputs and q regression functions. The terms
in the left column are either described in ProcBuildCoreGP or they are shorthands (e, W). The terms in the right hand
side column are the integral forms, which will be presented in the following section.

188 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

Symbol | Dimension | Symbol | Dimension
o 1x1 Uy 1x1

I5) gx1 P, nxXn

f nx1 Sw qgxn

H nXxq Qu qg%xq

A nxn Ry 1xgq

e nx1 Tw 1xn

w qxq

The integral forms

General case

When no assumptions are made about the distribution of the inputs, the correlation and the regression functions we
have general expressions for the Uy, Py, Sw, Qu, Rw, T, terms. These are

Uw:/ / / c(z, 25w (| 2w)w (2 |20)w (24) dzgdal,da.,
X Jxg Xy

— T x*Twz71, wlz' Nz Volz o da-da
Pw/Xw/X/th(V(2" Y w (@ |20) (@l |0)w (2 do g daly da,
h(2)t(x*) T w(@p|Tw)w (2| 2w)w(2w)da s dal,da,

(z)h(x*)Tw(:zzu—, |0)w (2l | T) (T4) A i Ay

£
I
5\
§<\
>

Ro= [o) o(al,)dn,

©

T
Ty = / t(z) w(e|rew)drs
X
Here, x5 and 2l denote two different realisations of 5. x* is a vector with elements made up of z/; and z,, in the
same way as x is composed of z and xz,,. Remember also that R,, and T, are functions of x,,.

h(x) is described in the alternatives page on emulator prior mean function (AltMeanFunction). ¢(.,.) is the correlation
function discussed in the alternatives page on emulator prior correlation function (AlrCorrelationFunction). Also
t(z) = ¢(D, z), as introduced in ProcBuildCoreGP.

w(xy,) is the joint distribution of the x,, inputs and w(x5|z,,) is the conditional distribution of x; when the values of
x,, are known.

Finally, when one of the above integral forms appears without a subscript (e.g. U), it is implied that the set w is empty.

Special case 1

We now show derive closed form expressions for the above integrals when we make specific choices about w(-) ¢(+,)
and h(-). We first assume that w(-) is a normal distribution given by

1 1
Wexp _*(x — m)TB(f,U — m)

) = ,

13.65. Procedure: Variance Based Sensitivity Analysis using a GP emulator 189

Multi-Output GP Emulator Documentation, Release 0.6.0

We also assume the generalised Gaussian correlation function with nugget (see AlrCorrelationFunction)
c(x,2") = vy + (1 — v)exp{—(z — /)T C(x — o)}

where I,—,/ equals 1 if z = 2’ but is otherwise zero, and v represents the nugget term. The case of a generalised
Gaussian correlation function without nugget is simply obtained by setting v = 0.

We let both B, C' be general positive definite matrices, partitioned as

wa ww
wa CumI)
¢= { Cow Con }

Finally, we do not make any particular assumption for h(x).

We now give the expressions for each of the integrals

U, is the scalar

|B|1/2|wa‘1/2

Uw:(l—l/) |F|1/2
with
wa + waB&%wa Bwu‘) Bwi)
F= Byw 2Csw + Baw —2Csw
Bow —2Cgw 2Cyw + Bow

U is the special case when w is the empty set. The exact formula for U is given in ProcUAGP.

P, is an n x n matrix, whose (k,)" entry is

B 1/2 wa 1/2 1
Py(k,)=(1- V)QMexp {— [r —gTF_lg]}

REE 2
with
4wa + wa + Bwﬁ)quéijw 2Cwu_1 + wa 2Cw'zI) + wa
F= 2Cgw + Biw 2Cww + Buw 0
2C 45w + Baw 0 2Cww + Baw
and
Qwa(xw,k + xw,l - Qmw) + QCw@(xﬂ),k + Tw,l — 2m71;)
g = Qwa(xw,k - mw) + 2wa($m,k - mw)
2C 5w (w1 — M) + 2Cqw(Ta,1 — M)
and

r = (zp —m)T2C(xx —m) + (x; — m) 2C(z; — m)
P is a special case of P, when w is the empty set, and reduces to

P=T1"T

190 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

S, is an ¢ x n matrix, whose (k,1)*® entry is

‘3‘1/2|wa|1/2 { 1
— — exp{ —

Sw(k, 1) =(1-v) —[r—g"F g } E.[hr(2)]

|F|1/2 2
with
chw + wa + szI)B;'}Dwa BunI) 2071)1?1 + Bwu‘)
F == wa B@w O
2Cgw + Baw 0 2Csw + Baw
and
2Cuw 0 2Cuw Tyl — My
g= 0 0 0 0
2030w 0 2Caw Tw,l — My
and
T
LTaw,l — My 2wa 0 2Cwu7 La,l — May
r= 0 0 0 0 0
LTap,l — My 2050w 0 20w T, l — My

The expectation E. [] is w.r.t. the normal distribution A'(m + F~1g, F~1). Also hy(x) is the k-th element of h(z).

S is a special case of S, when w is the empty set, and reduces to

S=RTT

Q. is a ¢ x g matrix, whose (k,)™ entry is

B 1/2 Bu‘/u‘) 1/2
Qi) = P o))]

where the expectation E.[-] is w.r.t. the normal distribution A/ ([m.,, mg]T, F~1)
with

wa + Bw'u’zBut)éBu’)w wa

F= Baw Buw

@ is a special case of), when w is the empty set, and reduces to

Q=R"R

R, is the 1 x ¢ vector with elements the mean of the elements of h(x), w.r.t. w(zg|zy,), i-e.,

= xTwmfx L5
Rw—/X ()Tl dze

w

and is a function of z,,. R is a special case of R,,, when w is the empty set. The formula for R is given in ProcUAGP.

13.65. Procedure: Variance Based Sensitivity Analysis using a GP emulator 191

Multi-Output GP Emulator Documentation, Release 0.6.0

T, is an 1 x n vector, whose k" entry is

_ |Baw|'/? L T -1
Tw(k’)—(1—V)|20”+B”|1/Qexp S |F g Fyg

with

F = (T — My — (Fﬁlg)w)T
[Qwa + Bwu’JB;»i*;Bu’)w - (chﬂ/ + wa)@cﬂ;w + wa)_l(zcww + Bi}w)]

(T — My — (F_lg)w)
F _ 2wa + meB&l@Bmw 2Cw71) + wa
o 2Cow + Baw 2Cww + Baow

g=2C(xr, —m)

r = (xx —m) 20 (xy —m)

(F~1g),, is the part of the F'~!g vector that corresponds to the indices w. According to the above formulation, these
are the first #(w) indices, where #(w) is the number of indices contained in w.

T is a special case of T,, when w is the empty set. The formula for 7" is given in ProcUAGP.

Special case 2

In this special case, we further assume that the matrices B, C' are diagonal. We also consider a special form for the
vector h(x), which is the linear function described in AltMeanFunction

h(z) = [1,2T])F

‘We now present the form of the integrals under the new assumptions.

U, is the scalar
B.. 1/2
Uy, =(1-— e
=) ZI;IU (B“v + 2(20@)

Again, U is the special case when w is the empty set, and its exact formula is given in ProcUAGP.

P,, is an n x n matrix, whose (k, [)*" entry is

Py(k,l) = (1=v)[Licq 2CfrBM €xp {*% ZQCC;,+BB” (@i —mi)® + (wig — m1)2]}

B 1/2 1 1
12 [S—
HiEw (4Cii+Bii) €Xp { 2 4Cy;+DBj;

[4C% (w51 — w31)? + 2C5 By { (wi e — mi)? + (wiy — my)?}] }

where the double indexed x; x, denotes the i input of the £*® training data.
P is a special case of P, when w is the empty set, and reduces to

pP=TTT

192 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

S, is an ¢ x n matrix whose (k,)" entry is
Sulk,) = (1= v)E.[hi(x)]

Bili/2 1| 2Ci;By; 2
Hie{w,m} CutBiZ P\ "2 |2C,+ B, (@i — mi)

For the expectation we have

E.[h(z)] =1
E.[hjt1(z)] = o if jew

S is a special case of S, when w is the empty set, and reduces to

S=RTT

Qu is a ¢ X g matrix. If we assume that its ¢ indices have the labels [1, w, w], then,

1 T T

mﬁz T mw T
Quw=| mas mgmy Mg,
My MemL memk + Bl

@ is a special case of @),,, when w is the empty set, and reduces to

Q=RTR

R, isal x ¢ vector. If we assume that its ¢ indices have the labels [1, @, w], then,

Ry = [1,mL 2T

w w

R is a special case of R,,, when w is the empty set. The formula for R is given in ProcUAGP.

T, is an 1 x n vector, whose kt® entry is

B-l-/2 1 2C..B; 5
Tu(k) = (1 - N S _1 2CabBa o
W= ‘61{_[} (2Cy; + Byi)'/? exp{ 22C + By (@i —m) }

1
€xp {_2 (xw - xw,k)T2wa (wa - xw,k)}
Recall that x,, denotes the fixed values for the inputs X,,, upon which the measures M,,, V,, and V1, are conditioned.
On the other hand, z,, ; represents the w inputs of the kth design points.

T is a special case of T),,, when w is the empty set. The formula for 7" is given in ProcUAGP.

13.65.5 References

The principal reference for these procedures is

Oakley, J.E., O’Hagan, A., (2004), Probabilistic Sensitivity Analysis of Complex Models: a Bayesian Approach, J.R.
Statist. Soc. B, 66, Part 3, pp.751-7609.

The above paper does not explicitly consider the case of a non-zero nugget. The calculations of E*[V,,] and E*[Vr,,]
produce results that are scaled by (1 — v), and in general (1 — v/)o? is the maximum variance reduction achievable
because the nugget v represents noise that we cannot learn about by reducing uncertainty about X. See the discussion
page on the nugget effects in sensitivity analysis (DiscUANugget) for more details on this point.

13.65. Procedure: Variance Based Sensitivity Analysis using a GP emulator 193

Multi-Output GP Emulator Documentation, Release 0.6.0

13.65.6 Ongoing work

We intend to provide procedures relaxing the assumption of the “linear mean and weak prior” case of ProcBuild-
CoreGP as part of the ongoing development of the toolkit. We also intend to provide procedures for computing
posterior variances of the various measures.

13.66 Procedure: Variogram estimation of covariance function hyper-
parameters

13.66.1 Description and Background

Variogram estimation is an empirical procedure used to estimate the variance and correlation parameters, (o2,) in a
stochastic process. Variogram estimation has been typically used to assess the degree of spatial dependence in spatial
random fields, such as models based on geological structures. Since the general emulation methodology shares many
similarities with spatial processes, variogram estimation can be applied to the output of complex computer models in
order to assess covariance hyperparameters.

Since variogram estimation is a numerical optimisation procedure it typically requires a very large number of evalu-
ations, is relatively computationally intensive, and suffers the same problems as other optimisation strategies such as
maximum likelihood approaches.

The variogram itself is defined to be the expected squared increment of the output values between input locations x
and z’:

2y(z,2") = E[|f(z) — f(2")’]

Technically, the function «(z, z’) is referred to as the “semi-variogram” though the two terms are often used inter-
changeably. For full details of the properties of and the theory behind variograms, see Cressie (1993) or Chiles and
Delfiner (1999).

The basis of this procedure is the result that any two points x and =’ which are separated by a distance of (approx-
imately) ¢ will have (approximately) the same value for the variogram ~(x, z’). Given a large sample of observed
values, we can identify all point pairs which are approximately separated by a distance ¢ in the input space, and use
their difference in observed values to estimate the variogram.

If the stochastic process f(x) has mean zero then the variogram is related to the variance parameter o2 and the
correlation function as follows

2y(x,2') = 20%(1 — Cor[f(z), f(2')]).
Thus estimation of the variogram function permits the estimation of the collection of covariance hyperparameters.

Typically, the variogram estimation is applied to the emulator residuals which are a weakly stationary stochastic
process with zero mean. For each point at which we have evaluated the computer model, we calculate w(z) =
f(z) — BTh(;v), where 3 are the updated values for the coefficients of the linear mean function. We then apply the
procedure below to obtain estimates for (a2, d).

13.66.2 Inputs

* A vector of n emulator residuals (w(z1), w(z2),. .., w(x,))
* The n-point design, X
* A form for the correlation function ¢(z, z’)

* Starting values for the hyperparameters (02, §)

194 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

13.66.3 Outputs

* Variogram estimates for (02, §)

13.66.4 Procedure

Collect empirical information
1. For each pair of residuals (w(z;), w(x;)), calculate the absolute inter-point distance h; = ||z; — z;||? and the
absolute residual difference e;; = |w(z;) — w(x;)]

2. Thus we obtain the n(n — 1)/2 vector of inter-point distances ¢ = (¢;), and the vector of absolute residual
differences e = (ey)

3. Divide the range of ¢ into N intervals, Z,
4. For each of the N intervals, calculate:
1. The number of distances within that interval, n, = #{t;; : t;; € Zo},
2. The average inter-point separation for that interval, ¢, = n% Ztij ez, bij
3. An empirical variogram estimate — the classical estimator g, or the robust estimator, g,, as follows:

ga:ni Z ez‘2j

@ tij €L,

o (Ztii €Z, e%s/na)4

90 = 10,457 + 0.494/n,)

Either of the two variogram estimators can be used in the estimation procedure, however the classical estimator is
noted to be sensitive to outliers whereas the robust estimator has been developed to mitigate this.

Fit the variogram model

Given the statistics n,, t,, and an empirical variogram estimate, g,, for each interval, Z,, we now fit the variogram
model by weighted least squares. This typically requires extensive numerical optimisation over the space of possible
values for (02,).

For a given choice of (02,), we calculate the theoretical variogram =y, for each interval Z, at mean separation Z,.
The theoretical variogram for a Gaussian correlation function with correlation length parameter § and at inter-point
separation t, is given by

Yo = 'Y({a) = 0'2(1 — eXp{*{,{Mtia})a

where M is a diagonal matrix with elements 1/62.

Similarly, the theoretical variogram for a Gaussian correlation function in the presence of a nugget term with variance
2

ao” is
v =7(ta) = *(1 — a)(1 — exp{—tL Mt,}) + ac?.

Beginning with the specified starting values for (o2, §), we then numerically minimise the following expression,

W = ZO.Sna(ga/’ya —1)?,

for (02, 8) over their feasible ranges.

13.66. Procedure: Variogram estimation of covariance function hyperparameters 195

Multi-Output GP Emulator Documentation, Release 0.6.0

13.66.5 References

1. Cressie, N., 1993, Statistics for spatial data, Wiley Interscience
2. Chiles, J.P., P. Delfiner, 1999, Geostatististics, Modelling Spatial Uncertainty, Wiley-Interscience

13.67 Procedure: Generate a Weyl design

13.67.1 Description and Background

A Weyl design (also known as a Richtmyer design) is one of a number of non-random space-filling designs suitable
for defining a set of points in the simulator input space for creating a training sample.

The n point Weyl design in p dimensions is generated by a generator set g = (g1, . - ., gp) of irrational numbers. See
the “Additional Comments” below for discussion of the choice of generators.

13.67.2 Inputs

¢ Number of dimensions p
* Number of points desired n

* Set of irrational generators g1, ..., gp

13.67.3 Outputs

o Weyl design D = {z1,z2,...,2,}

13.67.4 Procedure
For j = 0,...,n — 1, generate points as
Zjr1 = (j X g1modl,j X gamodl,...,j X ggmodl).

Note that the operator “mod 1” here has the effect of returning the fractional part of each number. For instance, if
j=Tand g =2 =1.414.. ., then

J X g1 =9.89949...
and so

j x gimodl = 0.89949....

13.67.5 Additional Comments

A potential problem with Weyl designs is the difficulty in finding suitable generators. One suggestion is to let g; be
the square root of the ¢-th prime, but this may not work well when p is large.

196 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

13.67.6 References

The following is a link to the repository for Matlab code for the Weyl sequence in up to 100 dimensions: CPWeylSe-
quence.m (disclaimer).

13.68 Example: 1 Dimensional History Matching

13.68.1 Description

In this Example page we outline a simple but intuitive 1-dimensional example of the history matching process, as
described in ThreadGenericHistoryMatching. This will require matching a simple 1-dimensional simulator f(z) to
an observation z, and will involve two waves of refocussing. The notation used is the same as that defined in Thread-
GenericHistoryMatching. Here we use the term model synonymously with the term simulator.

13.68.2 Setup

1.
2.

We have a simple 1D function (a sine wave), which we have used to perform 6 runs.

The plan is that we will construct an emulator, and use this to evaluate the implausibility function I (z) over the
1D input space Xj

We will then impose cutoffs to reduce the 1D input space & down to the non-implausible region denoted &}
(see Wave 1 and Figure 1 below).

Then we perform a second wave of runs (that have inputs belonging to &) and re-emulate using these new runs.
The new wave 2 emulator will be more accurate, and hence will change the implausibility function I(x).

Imposing the cutoffs on the new implausibility function defines the non-implausible region X5, which will be
(in this simple example) a good approximation to the set of all acceptable inputs X (see Wave 2 and Figure 2
below).

We do not discuss the emulator construction, except to say here we are using purely a Gaussian process emulator,
with no regression terms (this is to allow easier visualisation).

13.68.3 Wave 1

Figure 1 (top panel) shows:

1.
2.
3.
4.

The six model runs as black dots (inputs on x-axis, outputs on y-axis).
The emulator expectation E[f ()] (blue line).
Suitable credible intervals (red lines) given by E[f(x)] £ 3v/Var[f(x)].

The observation z = —0.8 along with -3¢ observational errors, where 02 = Var[e] = 0.05% (all given by the
3 horizontal black lines).

Figure 1 (bottom panel) shows:

1.
2.
3.

The 1D implausibility function I(z) (black dots).
The implausibility cutoff level ¢ = 3 (thin green line).

The green colouring on the x axis shows the inputs that belong to the non-implausible region after Wave 1,
denoted X

13.68. Example: 1 Dimensional History Matching 197

https://virgo.aston.ac.uk/MUCM/WP3_1/code/CPWeylSequence.m
https://virgo.aston.ac.uk/MUCM/WP3_1/code/CPWeylSequence.m

Multi-Output GP Emulator Documentation, Release 0.6.0

Model Output f(x)

1)

Implausibility

10

05

0.0

-05

-1.0

20

10

Emulator of Model Output f(x)

N/

T T T T T T
o 10 20 30 40 50

Input Parameter x

Implausibility

2 g § \/ :
° g § °
S 3 H H
D g : 3
° 8 ° S
° H s]
c g
o § K :
: N
2 g
° 8
g
2
3
3 E
j
I
T
0] 10 20 30 40 50

Input Parameter x

Fig. 3: Figure 1: 1D history matching: Wave 1

198

Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

At this point we perform three more runs within the green region of Figure 1, that is pick new x values that are
members of A and run the model at these new points.

13.68.4 Wave 2

Emulator of Model Output f(x)

05 10

Model Output f(x)
00
|

(

T T T T T T
o 10 20 30 40 50

Input Parameter x
Implausibility

ity = 10¢)
15
|

10

Implausibility

y vV Vv

(o] 10 20 30 40 50

Input Parameter x

Fig. 4: Figure 2: 1D history matching: Wave 2

Figure 2 (top panel) shows how the emulator looks at Wave 2 after the three new runs have been incorporated. Note
that:

1. The new runs are only in the previous non-implausible region X} .

2. The emulator is now far more accurate in this A region (the credible interval given by the red lines is much
narrower).

3. Further Waves would not be useful as the emulator variance is now far smaller that the observational errors,
hence a Wave 3 would not teach us much more about the set of acceptable inputs X'.

Figure 2 (bottom panel) shows the new implausibility measure I(x) at Wave 2. Note that:

1. The implausibility measure () has increased in certain regions (because we have more information from the
3 new runs).

2. The cutoff now defines a smaller non-implausible set X5 (given by the green points on the x-axis): this is
Refocussing.

3. There are now two non-implausible regions of input space remaining: a definite possibility in many applications.

13.68. Example: 1 Dimensional History Matching 199

Multi-Output GP Emulator Documentation, Release 0.6.0

13.68.5 Discussion

The 1-Dimensional example shows the basic history matching process. Note that the model discrepancy was assumed
zero for simplicity and to aid visualisation.

When dealing with higher dimensional input spaces, the problem of visualising the results (e.g. the location and
shape of the current non-implausible volume X;) becomes important. Various techniques are available including
implausibility projections and optical depth plots. See Vernon et. al 2010 for further details.

13.68.6 References

Vernon, 1., Goldstein, M., and Bower, R. (2010), “Galaxy Formation: a Bayesian Uncertainty Analysis,” MUCM
Technical Report 10/03

13.69 Example: A one dimensional emulator

13.69.1 Model (simulator) description

In this page we present an example of fitting an emulator to a p = 1 dimensional simulator (model). The simulator
we use is surfebm. Surfebm is an energy balance model of the Earth’s climate. The state variables are upper ocean
temperatures averaged around the globe at constant latitudes. There are 18 boxes from the North to South poles. In
addition there is a single deep ocean box. If the upper ocean boxes have a temperature below 0 it freezes. Water and
ice have different albedos and there is an overturning circulation moving heat from the Arctic to the Antarctic. In this
example we will keep all inputs fixed, apart from one, the solar constant. For simplicity in this example we only look
at a single output, the mean upper ocean temperature. Figure 1 shows the mean temperature over the input range of
the solar constant.

10

Mean Surface Temperature

50 -

1100 1150 1200 1250 1300
Solar Constant

Fig. 5: Figure 1: The simulator’s output and the 6 design points

200 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

13.69.2 Design

Design is the selection of the input points at which the simulator is to be run. There are several design options that can
be used, as described in the alternatives page on training sample design for the core problem (A/rCoreDesign). For this
example, we will use an Optimised Latin Hypercube Design, which for one dimension is a set of equidistant points on
the space of the input variable.

We select n = 6 design points, which are shown in Figure 1 as circles. These points are
[Z1, T2, -+, T6] = [1100, 1140, 1180, 1220, 1260, 1300]
We scale our design points so that they lie in [0, 1]. That is,
D = [z1,22, -+ ,x6¢] = [0.0,0.2,- - ,1.0]
The output of the model at these points is

f(D) = [~48.85, —45.15, —23.78, —8.87, —1.49, 4.77]"

13.69.3 Gaussian Process setup

In setting up the Gaussian process, we need to define the mean and the covariance function. For the mean function, we
choose the linear form described in the alternatives page for emulator prior mean function (AltMeanFunction), which
ish(z)=[1,z]Tandg=1+p=2.

For the covariance function we choose o2c(+, -), where the correlation function c(-, -) has the Gaussian form described
in the alternatives page on emulator prior correlation function (AltCorrelationFunction)

c(z,2") = exp [— Z{(xl — xé)/éi}Q] =exp [—{(m — x')/5}2]

noting that in this case p = 1.

13.69.4 Estimation of the correlation length

We start with the estimation of the correlation length §. In this example we will use the value of § that maximises the
posterior distribution 7} (&), assuming that there is no prior information on 6, i.e. w(J) o< const. The expression that
needs to be maximised, according to the procedure page on building a Gaussian process emulator for the core problem
(ProcBuildCoreGP), is

m5(8) oc (%)~ O RAIT 2 HE AT H T,

where
62 =(n—q—2) " f(D)T {A*l — A (HTA ' H) HTA*I} F(D).
H is defined as
H = [h(z1), h(z3), -, h(zn)]T.
Ais the n x n correlation matrix of the design points, with elements ¢(x;, z;), i, j € {1,--- ,n}.

Recall that in the above expressions the only term that is a function of ¢ is the correlation matrix A.

13.69. Example: A one dimensional emulator 201

Multi-Output GP Emulator Documentation, Release 0.6.0

Reparameterisation

In order to maximise the posterior 7% (J), we reparameterise it using 7 = In(24), to obtain 7*(7) = 75 (exp(7/2)).
This has the benefit of making the optimisation problem unconstrained, because § € (0, o), while 7 € (—00, 0).

Posterior function

Figure 2 shows In(7*(7)) as a function of 7.

In(x (v))

Fig. 6: Figure 2: The log posterior of T as a function of 7

The maximum of this value can be obtained with any maximisation algorithm. In our case, we used Nelder - Mead.
The value of 7 that maximises the posterior is -2.76 and the respective value of ¢ is 0.25. From now on, we will refer
to this value as §.

Because we have scaled the input to lie in [0, 1], 4 is one quarter of the range of over which we are fitting the emulator.
This is a fairly typical value for a smoothness parameter, indicating that there is structure to the way that the output
responds to this input in addition to the linear mean function that has been fitted, but that the response is not particularly
“wiggly”. In terms of the original input scale, B) corresponds to a smoothness parameter of 200 x 0.25 = 50.

13.69.5 Estimates for the remaining parameters

Apart from the correlation lengths, the two other parameters of the Gaussian Process are 3 and 0. Having estimated
the correlation lengths, the estimate for 52 is given by the equation above and

B=(H"A'H) " HTAT'f(D).

Note that in these equations, the matrix A is calculated using 5. The values we got for the above parameters are
B = [-47.30,53.79]7 and 62 = 92.89 . Therefore, the fitted underlying linear trend is y = —47.3 + 53.79x
(remembering that z is transformed to lie in [0,1]), with deviation from this line measured by a standard deviation of

v92.89 = 9.64.

202 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

13.69.6 Posterior mean and Covariance functions

The expressions for the posterior mean and covariance functions according to ProcBuildCoreGP are

-~

m*(z) = h(z)"B + c(x)" A7} (f(D) — HP)
and
vt (@, 2) = 2 {c(z, a') — (@) T A (@) + (h(z)T — e(@)T A H) (HT AT H) ™ (b)) — e(2’)TAT H)' Y.

Figure 3 shows the predictions of the emulator for 100 points uniformly spaced in 1075, 1325 in the original scale.
The continuous line is the output of the simulator and the dashed line is the emulator’s output m*. The shaded areas
represent 2 times the standard deviation of the emulator’s prediction, which is the square root of the diagonal of matrix

*

v,

10

Mean Surface Temperature

1100 1150 1200 1250 1300
Solar Constant

Fig. 7: Figure 3: Simulator (continuous line), emulator’s mean (dashed line) and 95% confidence intervals (shaded
area)

We see that the true simulator output lies outside the two standard deviation interval for inputs around 1160 but
otherwise seems to capture the behaviour of the simulator well. The next step would be to validate the emulator, at
which point the anomaly around 1160 might be found, leading to a rebuilding and improvement of the emulator.

13.69.7 Validation

In this section we validate the above emulator according to the procedure page on validating a Gaussian process
emulator (ProcValidateCoreGP).

The first step is to select the validation design. Following the advice in the discussion page on the design of a validation
sample (DiscCoreValidationDesign), we chose n’ = 3p = 3. We choose 2 points close to the original training points
and one more halfway between 1140 and 1180, where the emulator makes the biggest jump. In the original input space
of the simulator, the validation points we choose are

[z, @5, 2,] = [1110, 1160, 1250]
and in the transformed space

D' = [z}, x4, 4] = [0.05,0.3,0.75]

13.69. Example: A one dimensional emulator 203

Multi-Output GP Emulator Documentation, Release 0.6.0

The simulator’s output at these points is
f(D') = [-48.16,-39.63, —3.14]"

We then calculate the mean m*(-) and variance v*(+, -) of the emulator at the validation design point D’. The means
are

m*(D') = [~48.83, -35.67, —3.11]
and the standard deviations are
diag[v* (D', D')]*/? = [1.38,1.34,0.98]7

The predictions with error bars at 2 standard deviations are shown in Figure 4, which shows that all the predictions are
within 2 standard deviations, with the exception of the prediction at £ = 1160.

10

Mean Surface Temperature

1100 1150 1200 1250 1300
Solar Constant

Fig. 8: Figure 4: Emulator’s predictions at the validation points, with error bars at =2 standard deviations

Figure 5, shows the individual standardised errors, indicating that they are all within the boundaries of +2 standard
deviations, with the exception of the prediction at 1160, which is at 3 standard deviations.

The Mahalanobis distance diagnostic for this validation was found to be
M = (f(D') = m* (D))" (v" (D', D))" (f(D') — m* (D)) = 26.6
when its theoretical mean is
EM]=n"=3

The conclusion is that the emulator failed in both diagnostics, because the Mahalanobis distance is too large, and one
of the individual standardised errors is close to 3. We will therefore rebuild the emulator using both the previous
training points and the validation points for training.

Rebuilding the emulator

We now rebuild the emulator using both the training and the validation points. That is,

[#1, %2, ,&n,] = [1100, 1110, 1140, 1160, 1180, 1220, 1250, 1260, 1300]

204 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

Individual Standardised Errors
o
X

1100 1150 1200 1250 1300
Solar Constant

Fig. 9: Figure 5: Individual standardised errors for the prediction at the validation points

which in the transformed space are
D = [z1,22, + ,xn,] = [0,0.05,0.2,0.3,0.4,0.6,0.75,0.8, 1]
The simulator’s output at these points is
f(D) = [~48.85, —48.16, —45.15, —39.63, —23.78, —8.87, —3.14, —1.48,4.77]"

Following the same procedure as before, we find the following values for the parameters:

B = [—48.65,56.47]"

Figure 6 shows the predictions of the emulator for 100 points uniformly spaced in 1075, 1325 in the original scale.
A comparison with Figure 3 shows that the new emulator has a smaller predictive variance, and the mean of the

prediction is closer to the actual value of the simulator.

Re-validation

We finally carry out the two validation tests for the new emulator. Using the same reasoning as before, we select the

following validation points
[Z, &5, &,] = [1130, 1200, 1270]
which in the transformed input space are
D' = [z}, x4, x45] = [0.15,0.5,0.85]

The simulator’s output at these points is

f(D') = [-48.16,—39.63, —3.14]7

13.69. Example: A one dimensional emulator

205

Multi-Output GP Emulator Documentation, Release 0.6.0

Mean Surface Temperature

1100 1150 1200 1250 1300
Solar Constant

Fig. 10: Figure 6: Mean and 95% confidence intervals for the rebuilt emulator

The following the same new validation points we select are
D' =[z},xh, - ,x.,] =1[0.05,0.15, - - ,0.95]
The simulator’s output for these values is
f(D') = [~46.42, —15.45,0.55]"
The mean and standard deviation of the emulator at the new validation points is
m*(D') = [~45.98, —12.15, —0.23]"
diag[v* (D', D")]*/? = [0.60, 1.90,0.99]"

Figure 7 shows the individual standardised errors. Note that they are now all within 2 standard deviations.

The Mahalanobis distance is now M = 6.17, whereas its theoretical mean is
E[M]=n'=3.
and its variance is

2n'(n' +n—q—2)
Var[M] = ”(”ntz_z) 16,

Therefore, the Mahalanobis distance found is a typical value from its reference distribution, and taking also into
account the fact that all the standardised errors are within 2 standard deviations, the emulator is declared valid.

13.69.8 Final Build

After the validation being successful, we can rebuild the emulator using all the data, which would provide us with its
final version. The final set of 12 training points is

[#1, @0, ,@n,] = [1100,1110, 1130, 1140, 1160, 1180, 1200, 1220, 1250, 1260, 1270, 1300]

206 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

Individual Standardised Errors
o

1100 1150 1200 1250 1300
Solar Constant

Fig. 11: **Figure 7:* individual standardised errors for the new validation points

which in the transformed space are
D = [z1,22, -+ ,2n,] = [0,0.05,0.15,0.2,0.3,0.4,0.5,0.6,0.75,0.8,0.85, 1]
The simulator’s output at these points is
f(D) = [—48.85, —48.16, —46.42, —45.15, —39.63, —23.78, —15.45, —8.87, —3.14, —1.49,0.55, 4.77]"
The hyperparameter estimates obtained using the above training points are
6 =0.145
6% =30.05
B = [—50.18, 58.64]"
Finally, figure 8 shows the predictions of the emulator for 100 points, uniformly spaced in 1075, 1325 in the original

scale. Comparing with figures 3 and 6, we see that the addition of the extra training points has further reduced the
predictive variance and moved the mean closer to the simulator’s output.

13.70 Example: A two dimensional emulator with uncertainty and
sensitivity analysis

13.70.1 Model (simulator)

In this example we fit a Gaussian process emulator to the surfebm model, using two inputs, the Solar Constant and the
Albedo, and one output, the Mean Surface Temperature.

13.70.2 Fitting the emulator

13.70. Example: A two dimensional emulator with uncertainty and sensitivity analysis 207

Multi-Output GP Emulator Documentation, Release 0.6.0

Mean Surface Temperature

1100 1150 1200 1250 1300
Solar Constant

Fig. 12: Figure 8: Mean and 95% confidence intervals for the final build of the emulator

Design

For this example, the input ranges we are interested in are X, e [1370, 1420] for the solar constant and X, € [0.2,0.4]
for the albedo. We obtain our initial design from an p = 2-dimensional optimised Latin Hypercube in [0, 1], as
described in the procedure page for generating an optimised Latin hypercube design (ProcOptimalLHC). Figure 1
shows the design points mapped in the input space of the model. The n = 30 points in [0, 1] are arranged in a (p X n)
matrix which we call D.

0.4 —

0.35¢ ; *

0.3r +

Albedo

0.25} o

+
+

+

.2 Il 1 Il 1
01 370 1380 1390 1400 1410 1420
Solar Constant

Fig. 13: Figure 1: Design points in the simulator’s input space

Having obtained our design points we then run the surfebm model at these points and get the mean surface temperature,
which we denote as f(D).

208 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

Gaussian Process setup

As with the one dimensional example, we first set up the Gaussian Process, by selecting a mean and a covariance
function. We choose the linear mean function, described in the alternatives page on emulator prior mean function
(AltMeanFunction), which is h(x) = [1,2]T; thisis a (¢ x 1) vector, withq =1+ p = 3.

For the covariance function we choose o2c(-, -), where the correlation function ¢(-, -) has the Gaussian form described
in the alternatives page on emulator prior correlation function (AltCorrelationFunction):

c(x,z') = exp [— > - mé)/&-}gl
i=1

where the subscripts ¢ denote the input.

Estimation of the correlation lengths

The first step in fitting the emulator is to estimate the correlation lengths 6. We do this by first reparameterising o
as 7 = 21In(0). This makes the optimisation problem unconstrained, because 7 € [—00, oo], whereas § € [0, oc].
We then find the maximum of the posterior 7} (7) assuming a uniform prior on 7, i.e. 7,(7) o< const. Substitution
of 6 = exp(7/2) in 7} (J) from the procedure page on building a Gaussian process emulator for the core problem
(ProcBuildCoreGP) yields

e () o (8%)7 /2 A2 | HT AT H| 2,
with
52 =(n—q—2) " f(D)T {A*l —AT'H (H'A'H) HTA*} F(D).

H is the (n x p) matrix H = [h(z1), h(x3),- - , h(z,)]T, with z,, denoting the nth design point.

A is the n x n correlation matrix of the design points, with elements [A]; ; = ¢(x;, x;), ¢, j € {1,--- ,n}, which after
the reparameterisation can be written as

c(x;, x;) = exp l— Z(ac;” - ack,j)z/exp(ﬂc)] .

k=1
with z, ; denoting the ktau® is the correlation matrix A.

Figure 2 shows the log of the posterior 7% (7) as a function of 71, which corresponds to the solar constant, and 7,
which corresponds to the albedo. The maximum of In(7%(7)) is found at 7 = [—1.4001, —4.4864]. The respective
values of § are § = [0.4966, 0.1061].

We should mention here that 7*(7) can have a complicated structure, exhibiting several local maxima. Therefore,
the optimisation algorithm has to be initialised using several starting points so as to find the location of the global
maximum, or alternatively, a global optimisation method (e.g. simulated annealing) can be used.

We proceed with our analysis, using for ¢ the estimate
6 = [0.4966,0.1061]
Substitution in the expression for 52 yields
o = 1.0290
Finally, the regression coefficients 3 are found with the formula

-1

B=(H"AT'H)" H"A7'f(D).

with values B = [33.5758,4.9908, —39.7233]

13.70. Example: A two dimensional emulator with uncertainty and sensitivity analysis 209

Multi-Output GP Emulator Documentation, Release 0.6.0

20

10

Log likelihood

T, Albedo T, Solar Constant

Fig. 14: Figure 2: Log posterior (In(7%(7))) as a function of 71 and 75

13.70.3 Validation

After fitting the emulator to the model runs, we need to validate it. We do so by selecting 10 validation points from a
Latin hypercube. We call the validation set D’. The validation and the training points are shown in Figure 3.

0.4 : —

0.35} N ! +

0.3 i *

Albedo

0.25 .

+
+

+

2
01 370 1380 1390 1400 1410 1420
Solar Constant

Fig. 15: Figure 3: The training (black crosses) and validation points (green stars) in the simulator’s input space

We then run the model at the validation points to obtain its output, which we denote by f(D’). We finally, estimate the
posterior mean m(D’) and variance u(D’, D'), which are given by the formulae in the procedure page for building a
Gaussian process emulator for the core problem (ProcBuildCoreGP)

-~

m*(z) = h(x)"B + () A7 (f(D) - HP)

and

v (2,2) = 82 {c(z,2') — c(x)TA e(@) + (h(x)" — c(x)TATH) (HTATH) ™ (h(2')" — e(a)TA H) "}

210 Chapter 13. Uncertainty Quantification Methods

Multi-Output GP Emulator Documentation, Release 0.6.0

forxz,z’ € D'.

The individual standardised errors are then estimated, as it is explained in