Multi-Output GP Emulator

Documentation
Release 0.7.0

Eric Daub

May 10, 2022

Introduction and Installation:

1 Overview 3
2 Installation 5
3 Tutorial 9
4 Details on the Method 17
5 Gaussian Process Demo (Python) 21
6 Multi-Output Tutorial 25
7 Gaussian Process Kernel Demos (Python) 29
8 Mutual Information for Computer Experiments (MICE) Demos 33
9 History Matching Demos 37
10 Kernel Dimension Reduction (KDR) Demos 41
11 Gaussian Process Demo (GPU) 43
12 Gaussian Process Demo (R) 45
13 Gaussian Process Demo with Small Sample Size 49
14 Uncertainty Quantification Methods 53
15 mogp_emulator Implementation Details 387
16 Benchmarks 491
17 Indices and tables 495
Bibliography 497
Python Module Index 499

Index 501

Multi-Output GP Emulator Documentation, Release 0.7.0

mogp_emulator is a Python package for fitting Gaussian Process Emulators to computer simulation results. The
code contains routines for fitting GP emulators to simulation results with a single or multiple target values, optimizing
hyperparameter values, and making predictions on unseen data. The library also implements experimental design,
dimension reduction, and calibration tools to enable modellers to understand complex computer simulations.

The following pages give a brief overview of the package, instructions for installation, and an end-to-end tutorial
describing a Uncertainty Quantification workflow using mogp_emulator. Further pages outline some additional
examples, more background details on the methods in the MUCM Toolkit, full implementation details, and some
included benchmarks.

Introduction and Installation: 1

Multi-Output GP Emulator Documentation, Release 0.7.0

2 Introduction and Installation:

CHAPTER 1

Overview

Computer simulations are frequently used in science to understand physical systems, but in practice it can be difficult
to understand their limitations and quantify the uncertainty associated with their outputs. This library provides a range
of tools to facilitate this process for domain experts that are not necessarily well-versed in uncertainty quantification
methods.

This page covers an overview of the workflow. For much more detail, see the Details on the Method section of the
introduction, or the Uncertainty Quantification Methods section.

1.1 UQ Basics

The UQ workflow here describes the process of understanding a complex simulator. The simulator here is as-
sumed to be a deterministic function mapping multiple inputs to one or more outputs with some general knowl-
edge about the input space. We would like to understand what inputs are reasonable given some observa-
tions about the world, and understand how uncertain we are about this knowledge. The inputs may not be
something that is physically observable, as they may be standing in for missing physics from the simulator.

Parameter space History Matching — ©lausible
Inputs

Experimental design GP Emulator

Simulator Data

ig. 17 The Uncertainty Quantification wor i € plausible inputs for a compiex simulator give
some data and a parameter space, we use an experlmental design to sample from the space, run those points througg
the simulator. To approximate the simulator, we fit a Gaussian Process Emulator to the simulator output. Then,
to explore the parameter space, we sample many, many times from the experimental design, query the emulator, and
determine the plausible inputs that are consistent with the data usine History Matching.

Multi-Output GP Emulator Documentation, Release 0.7.0

plore the entire space. Instead, we will train a surrogate model or emulator model that approximates the simulator
and efficiently estimates its value (plus an uncertainty). We will then query that model many times to explore the
input space.

Because the simulator is expensive to run, we would like to be judicious about how to sample from the space. This
requires designing an experiment to choose the points that are run to fit the surrogate model, referred to as an Exper-
imental Design. Once these points are run, the emulator can be fit and predictions made on arbitrary input points.
These predictions are compared to observations for a large number of points to examine the inputs space and see what
inputs are reasonable given the observations and what points can be excluded. This is a type of model calibration, and
the specific approach we use here is History Matching, which attempts to find the parts of the input space that are
plausible given the data and all uncertainties involved in the problem.

Next, we describe the Installation prodecure and provide an example Tutorial to illustrate how this process works.

4 Chapter 1. Overview

to

run

as
many
times
as
needed
to

ex-

CHAPTER 2

Installation

In most cases, the easiest way to install mogp_emulator is via pip, which should install the library and all of its
dependencies:

’pip install mogp-emulator

You can also use pip to install directly from the github repository using

’pip install git+https://github.com/alan-turing-institute/mogp-emulator

This will accomplish the same thing as the manual installation instructions below.

2.1 Manual Installation

To install the package manually, for instance to have access to a development version or to take part in active develop-
ment of the package, the following instructions can be used to install the package.

2.1.1 Download

You can download the code as a zipped archive from the Github repository. This will download all files on the master
branch, which can be unpacked and then used to install following the instructions below.

If you prefer to check out the Github repository, you can download the code using:

git clone https://github.com/alan-turing-institute/mogp-emulator/

This will clone the entire git history of the software and check out the master branch by default. The master
branch is the most stable version of the code, but will not have all features as the code is under active development.
The devel branch is the more actively developed branch, and all new features will be available here as they are
completed. All code in the devel branch is well tested and documented to the point that results can be trusted, but
may still have some minor bugs and issues. Any other branch is used to develop new features and should be considered

Multi-Output GP Emulator Documentation, Release 0.7.0

untested and experimental. Please get in touch with one of the team members if you are unsure if a particular feature
is available.

2.1.2 Requirements

The code requires Python 3.6 or later, and working Numpy and Scipy installations are required. You should be
able to install these packages using pip if you do not have them already available on your system. From the base
mogp_emulator directory, you can install all required packages using:

pip install -r requirements.txt

This will install the minimum requirements needed to use mogp_emulator. There are a few addditional packages
that are not required but can be useful (in particular, pat sy is used for parsing mean functions using R-style formulas,
so all R users are highly encouraged to install the optional dependencies). Installation of the optional dependencies
can be done via:

pip install -r requirements-optional.txt

2.1.3 Installation

Then to install the main code, run the following command:

python setup.py install

This will install the main code in the system Python installation. You may need adminstrative priveleges to install
the software itself, depending on your system configuration. However, any updates to the code cloned through the
github repository (particularly if you are using the devel branch, which is under more active development) will not be
reflected in the system installation using this method. If you would like to always have the most active development
version, install using:

python setup.py develop

This will insert symlinks to the repository files into the system Python installation so that files are updated whenever
there are changes to the code files.

2.2 Documentation

The code documentation is available on readthedocs. A current build of the master and devel branches should
always be available in HTML or PDF format.

To build the documentation yourself requires Sphinx, which can be installed using pip. This can also be done in
the docs directory using pip install -r requirements.txt. To build the documentatation, change to the
docs directory. There is a Makefile in the docs directory to facilitate building the documentation for you. To build
the HTML version, enter the following into the shell from the docs directory:

’make html

This will build the HTML version of the documentation. A standalone PDF version can be built, which requires a
standard LaTeX installation, via:

’make latexpdf

6 Chapter 2. Installation

https://mogp-emulator.readthedocs.io

Multi-Output GP Emulator Documentation, Release 0.7.0

In both cases, the documentation files can be found in the corresponding directories in the docs/_build directory.
Note that if these directories are not found on your system, you may need to create them in order for the build to finish
correctly. A version of the documentation can also be found at the link above on Read the Docs.

2.3 Testing the Installation

2.3.1 Unit Tests

mogp_emulator includes a full set of unit tests. To run the test suite, you will need to install the development
dependencies, which include pytest and pytest-cov to give coverage reports, which can be done in the main
mogp_emulator directory viapip install -r requirements-dev.txt. The pytest-cov package is
not required to run the test suite, but is useful if you are developing the code to determine test coverage.

The tests can be run from the base mogp_emulator directory or the mogp_emulator/tests directory by
entering pytest, which will run all tests and print out the results to the console. In the mogp_emulator/tests
directory, there is also a Make file that will run the tests for you. You can simply enter make tests into the shell.

2.3. Testing the Installation 7

Multi-Output GP Emulator Documentation, Release 0.7.0

8 Chapter 2. Installation

CHAPTER 3

Tutorial

Note: This tutorial requires Scipy version 1.4 or later to run the simulator.

This page includes an end-to-end example of using mogp_emulator to perform model calibration. We define a
simulator describing projectile motion with nonlinear drag, and then illustrate how to sample from the simulator, fit
a surrogate model, and explore the parameter space using history matching to obtain a plausible subset of the input
space.

3.1 Projectile Motion with Drag

In this example, we will explore projectile motion with drag. A projectile with a mass of 1 kg is fired at an angle of 45
degrees from horizontal and a height of 2 meters. The projectile experiences gravity and drag opposes the motion of the
projectile, with a force that is proportional to the squared velocity. For this example, we assume that we do not know
the initial velocity or the drag coefficient, but we do know that the projectile travelled 2 km (with a standard deviation
measurement error of 20 meters). We would like to determine what inputs could have resulted in this observation.

70 1 3.1.1 Equations
60 - of Mo-
tion
— 50 1
§’ - The equa-
- 40 .
c tions of
.% 30 - motion for
T the projec-
20 tile are as
10 ~
0 -

0 20 40 60 80 100 120 140 160
Horizontal position (m)

Fig. 1: Example simulation of projectile motion with drag for C = 0.01 kg/m and vg = 100 m/s
computed via numerical integration.

Multi-Output GP Emulator Documentation, Release 0.7.0

follows:
dv
m d; = —Cuvgy/v2 402
dv
md—ty = —g — Cvy[v2 + 02
dz
> —w
dt *
dy
A
a Y
The initial
conditions
are

Ugco:Uo/\/i

vyozvo/\/i
x9g=0
yo=nh

This can be

integrated

in time until

y = 0, and
the distance travelled is the value of when this occurs.

We include a Python implementation of this model in mogp_emulator/demos/projectile.py. This uses the
scipy.integrate function solve_1ivp to perform the numerical integration. The RHS derivative is defined in
£, and the stopping condition is defined in the event function. The simulator is then defined as a function taking
a single input (an array holding the two input parameters of the drag coefficient C' and the initial velocity vo) and
returning a single value, which is x at the end of the simulation.

import numpy as np
import scipy
from scipy.integrate import solve_ivp

assert scipy.__version__ >= 'l.4', "projectile.py requires scipy version 1.4 or
—greater"

Create our simulator, which solves a nonlinear differential equation describing,_
—projectile

motion with drag. A projectile is launched from an initial height of 2 meters at an
angle of 45 degrees and falls under the influence of gravity and alir resistance.

Drag is proportional to the square of the velocity. We would like to determine the_
—distance

travelled by the projectile as a function of the drag coefficient and the launch,,
—velocity.

define functions needed for simulator

def f(t, y, ¢):
"Compute RHS of system of differential equations, returning vector derivative"

check inputs and extract

assert len(y) == 4

)
assert c >= 0.

(continues on next page)

10 Chapter 3. Tutorial

Multi-Output GP Emulator Documentation, Release 0.7.0

(continued from previous page)

vx = yl[0]
vy = yI[1]

calculate derivatives

dydt = np.zeros (4)

dydt [0] = —cxvx*np.sqrt (vxx*2 + vy*=*2)

dydt [1] = —9.8 - cxvy*np.sqrt (vx**2 + vyx*2)
dydt [2] = vx

dydt [3] = vy

return dydt

def event (t, y, c):
"event to trigger end of integration"

assert len(y) == 4
assert c >= 0.

return y[3]
event.terminal = True
now can define simulator
def simulator_base (x):
"simulator to solve ODE system for projectile motion with drag.
—projectile travels"

unpack values

assert len (x)
assert x[1] > 0.
c = 10.%x%x[0]
v0 = x[1]

set initial conditions

y0 = np.zeros(4)

y0[0] = v0/np.sqrt(2.)
yO[1l] = v0/np.sqrt(2.)
yO[3] = 2.

run simulation

returns distance_,

results = solve_ivp(f, (0., 1.e8), y0, events=event, args = (c,))

return results

def simulator (x):
"simulator to solve ODE system for projectile motion with drag.
—projectile travels"

returns distance_

(continues on next page)

3.1. Projectile Motion with Drag

11

Multi-Output GP Emulator Documentation, Release 0.7.0

(continued from previous page)

results = simulator_base (x)

return results.y_events[0][0][2]

3.1.2 Parameter Space

We are not sure what values of the parameters to use, so we must pick reasonable ranges. The velocity range might be
somewhere in the range of 0-1000 m/s, while the drag coefficient is much more uncertain. For this reason, we use a
logarithmic scale to represent the drag coeffient, with values ranging from 10~° to 10 kg/m. This will ensure that we
sample from a wide range of values to ensure that we understand the effect of this parameter on the simulation.

3.2 UQ Implementation

As described in Overview, Our analysis consists of three steps:
1. Drawing parameter values to run our simulator
2. Fitting a surrogate model to those points
3. Performing model calibration by sampling many points and comparing to the observations

We will describe each step and provide some code illustrating how the steps are done in mogp_emulator below.
The full example is provided in the file mogp_emulator/demos/tutorial.py, and we provide snippets here
to illustrate.

3.2.1 Experimental Design

For this example, we use a Latin Hypercube Design to sample from the parameter space. Latin Hypercubes attempt
to draw from all parts of the distribution, and for small numbers of samples are likely to outperform Monte Carlo
sampling.

To define a Latin Hypercube, we must give it the base distributions for all input parameters from which to draw
the samples. Because we would like our drag coefficient to be uniformly distributed on a log scale, and the initial
velocity to be uniformly distributed on a linear scale, we simply need to provide the upper and lower bounds of the
uniform distribution and the Python object will create the distributions for us. If we wanted to use a more complicated
distribution, we can pass scipy.stats Point Probability Functions (the inverse of the CDF) when constructing
the LatinHypercubeDesign object instead. However, in practice we often do not know much about the parameter
distributions, so uniform distributions are fairly common due to their simplicity.

To construct our experimental design and draw samples from it, we do the following:

import numpy as np

from projectile import simulator, print_results
import mogp_emulator

import mogp_emulator.validation

1lhd = mogp_emulator.LatinHypercubeDesign([(-5., 1.), (0., 1000.)])

n_simulations = 50
simulation_points = lhd.sample(n_simulations)
simulation_output = np.array([simulator(p) for p in simulation_points])

12 Chapter 3. Tutorial

Multi-Output GP Emulator Documentation, Release 0.7.0

This constructs an instance of LatinHypercubeDesign, and creates the underlying distributions by providing a list of
tuples. Each tuple gives the upper and lower bounds on the uniform distribution. Thus, the first tuple determines the
drag coefficient (recall that it is on a log scale, so this is defining the distribution on the exponent), and the second
determines the initial velocity.

Next, we determine that we want to run 50 simulations. We can get our simulation points by calling the sample
method of LatinHypercubeDesign, which is a numpy array of shape (n_simulations, 2). Thus, iterating over
the resulting object gives us the parameters for each of our simulations.

We can then simply run our simulation in our Python script. However, for more complicated simulations, we may
need to save these values and then submit our jobs to a computer cluster to have the simulations run in a reasonable
amount of time.

3.2.2 Gaussian Process Emulator

Once we have our simulation points, we fit our surrogate model using the GaussianProcess class. Fitting this model
involves giving the GP object our inputs and our targets, and then fitting the parameters of the model using an estima-
tion technique such as Maximum Likelihood Estimation. This is done by passing the GP object to the £it_GP_MAP
function, which returns the same GP object but with the parameter values estimated.

gp = mogp_emulator.GaussianProcess (simulation_points, simulation_output, nugget="fit")
gp = mogp_emulator.fit_GP_MAP (gp, n_tries=1)

print ("Correlation lengths = ".format (gp.theta.corr))
print ("Sigma = ".format (np.sqrt (gp.theta.cov)))
print ("Nugget = ".format (np.sqgrt (gp.theta.nugget)))

By default, if no priors are specified for the hyperparameters then defaults are chosen. In particular, for correlation
lengths, default priors are fit that attempt to put most of the distribution mass in the range spanned by the input data.
This tends to stabilize the fitting and improve performance, as fewer iterations are needed to ensure a good fit.

Following fitting, we print out some of the hyperparameters that are estimated. First, we print out the correlation
lengths estimated for each of the input parameters. These determine how far we have to move in that coordinate
direction to see a significant change in the output. If you run this example, if you get a decent fit you should see
correlation lengths of ~ 1.3 and ~ 500 (your values may differ a bit, but note that the fit is not highly sensitive to these
values). The overall variation in the function is captured by the variance scale o, which should be around ~ 20, 000
for this example.

If your values are very different from these, there is a good chance your fit is not very good (perhaps due to poor
sampling). If that is the case, you can run the script again until you get a reasonable fit.

3.2.3 Emulator Validation

To show that the emulator is doing a reasonable job, we now cross validate the emulator to compare its predictions
with the output from the simulator. This involves drawing additional samples and running the simulations as was done
above. However, we also need to predict what the GP thinks the function values are and the uncertainty. This is done
with the predict method of GaussianProcess:

n_valid = 10

validation_points = lhd.sample(n_valid)
validation_output = np.array([simulator(p) for p in validation_points])
mean, var, _ = gp.predict(validation_points)

(continues on next page)

3.2. UQ Implementation 13

Multi-Output GP Emulator Documentation, Release 0.7.0

(continued from previous page)

errors, idx = mogp_emulator.validation.standard_errors(gp, validation_points,
—validation_output)

print_results(validation_points[idx], errors, var[idx])

predictions is an object containing the mean and uncertainty (variance) of the predictions. A GP assumes that
the outputs follow a Normal Distribution, so we can perform validation by asking how many of our validation points
mean estimates are within 2 standard deviations of the true value by computing the standard errors of the emulator
predictions on the validation points. mogp_emulator contains a number of methods of automatically validating
an emulator given some validation points, including computing standard errors (see the validation documentation for
more details). Usually for this example we would expect about 8/10 to be within 2 standard devations, so not quite
as we would expect if it were perfectly recreating the function. However, we will see that this still is good enough in
most cases for the task at hand.

3.2.4 History Matching

The final step in the analysis is to perform calibration, where we draw a large number of samples from the model input
and compare the output of the surrogate model to the observations to determine what inputs are plausible given the
data. There are many ways to perform model calibration, but we think that History Matching is a robust technique
well-suited for most problems. It has the particular advantage in that even in the situation where the surrogate model
is not particularly accurate, the results from History Matching are still valid. This is in contrast to full Bayesian
Calibration, where the surrogate model must be accurate over the entire input space to obtain good results.

History matching involves computing an implausibility metric, which determines how likely a particular set of inputs
describes the given observations. There are many choices for how to compute this metric, but we default to the
simplest version where we compute the number of standard deviations between the surrogate model mean and the
observations. The variance is determined by summing the observation error, the surrogate model error, and a final
error known as model discrepancy. Model discrepancy is meant to account for the fact that our simulations do
not completely describe reality, and is an important consideration in studying most complex physical models. In this
example, however, we assume that our model is perfect and the model discrepancy is zero, though we will still consider
the other two sources of error.

To compute the implausibility metric, we need to draw a much larger number of samples from the experimental design
to ensure that we have good coverage of the input parameter space (it is not uncommon to make millions of predictions
when doing history matching in research problems). We draw from our Latin Hypercube Design again, though at this
sampling density there is probably not a significant difference between the Latin Hypercube and Monte Carlo sampling
(especially in only 2 dimensions). Then, we create a HistoryMatching object and compute which points are “Not Ruled
Out Yet” (NROY). This is done as follows:

n_predict = 10000
prediction_points = lhd.sample (n_predict)

hm = mogp_emulator.HistoryMatching (gp=gp, coords=prediction_points, obs=[2000., 400.])
nroy_points = hm.get_NROY ()

print ("Ruled out of points".format (n_predict - len(nroy_points), n_predict))

First, we set a large number of samples and draw them from the experimental design object. Then, We construct the
HistoryMatching object by giving the fit GP surrogate model (the gp argument), the prediction points to consider
(the coords argument), and the observations (the obs argument) as an observed value with an uncertainty (as a
variance). The predict method of the GP object is used to make predictions inside the history matching class. With

14 Chapter 3. Tutorial

Multi-Output GP Emulator Documentation, Release 0.7.0

the constructed HistoryMatching object, we can obtain the NROY points by calling the get_NROY method. This
returns a list of integer indices that can be used to index into the prediction_points array and learn about the
points that are not ruled out by our analysis. We finally print out the fraction of points that were ruled out. In most
cases, this should be a large fraction of the space, usually around 98% of the sampled points. Those that are not ruled
out are plausible inputs given the data.

We can visualize this quite easily due to the fact that our parameter space is only 2D by making a scatter plot of the
NROY points. We also include the sample points used to construct the surrogate model for reference. This plotting
command is only executed if matplot1lib is installed:

try:
import matplotlib.pyplot as plt
makeplots = True

except ImportError:
makeplots = False

if makeplots:

plt.figure()

plt.plot (prediction_points[nroy_points, 0], prediction_points[nroy_points,1], "o",
—label="NROY points")

plt.plot (simulation_points[:,0], simulation_points[:,1],"o", label="Simulation_
—~Points")

plt.plot (validation_points[:,0], validation_points[:,1],"o", label="Validation,
—Points")

plt.xlabel ("log Drag Coefficient")

plt.ylabel ("Launch velocity (m/s)")

plt.legend()

plt.show ()

which should make a plot that looks something like this:

3.2. UQ Implementation 15

Multi-Output GP Emulator Documentation, Release 0.7.0

1000 ~ '

800 f
0 |
£
-, 600 .
= [] .
o ® NROY points
?>J Simulation Points
S 400 -
C
5
[{v]
- ®
200 A

Yo
o 090

ol 8 N

-5 —4 -3 -2 -1 0 1
log Drag Coefficient

If the original emulator makes accurate predictions, you should get something that looks similar to the above plot. As
you can see, most of the space can be ruled out, and only a small fraction of the points remain as plausible options.
For launch velocities below around 200 m/s the projectile cannot reach the observed distance regardless of the drag
coefficient. Above this value, a narrow range of (C, vy) pairs are allowed (presumably a line plus some error due to the
observation error if our emulator could exactly reproduce the simulator solution). Above a drag coefficient of around
103 kg/m, none of the launch velocities that we sampled can produce the observations as the drag is presumably too
high for the projectile to travel that distance. There are some points at the edges of the simulation that we cannot rule
out, though the fact that they occur in gaps in the input simulation sampling suggests that they are likely due to errors
in our emulator in those regions.

3.3 More Details

This simple analysis illustrates the basic approach to running a model calibration example. In practice, this simulator is
not particularly expensive to run, and so we could imagine doing this analysis without the surrogate model. However,
if the simulation takes even 1 second, drawing the 10,000 samples needed to explore the parameter space would take
3 hours, and a million samples would take nearly 2 weeks. Thus, the surrogate becomes necessary very quickly if we
wish to exhaustively explore the input space to the point of being confident in our sampling.

More details about these steps can be found in the Uncertainty Quantification Methods section, or on the following
page that goes into more details on the options available in this software library. For more on the specific implemen-
tation detials, see the various implementation pages describing the software components.

16 Chapter 3. Tutorial

CHAPTER 4

Details on the Method

The UQ workflow described in the Overview section has three main components: Experimental Design, a Gaussian
Process Emulator, and History Matching, each of which we describe in more detail on this page. For more specifics
on the software implementation, see the linked pages to the individual classes provided with this library.

4.1 Experimental Design

To run the simulator, we must first select the inputs given some broad knowledge of the parameter space. This is
done using the various ExperimentalDesign classes, which require that the user specifies the distribution from which
parameter values are drawn. Depending on the particular design used, the design computes a desired number of points
to sample for the experimental design.

The simplest approach is to use a Monte Carlo Design, which simply randomly draws points from the underlying
distributions. However, in practice this does not usually give the best performance, as no attempt is made to draw
points from the full range of the distribution. To improve upon this, we can use a Latin Hypercube Design, which
guarantees that the every sample is drawn from a different quantile of the underlying distribution.

In practice, however, because the computation required to fit a surrogate model is usually small when compared to the
computational effort in running the simulator, a Sequential Design can provide improved performance. A sequential
design is more intelligent about the next point to sample by determining what new point from a set of options will
improve the surrogate model. This package provides an implementation of the Mutual Information for Computer
Experiments (MICE) sequential design algorithm, which has been shown to outperform Latin Hypercubes with only a
small additional computational overhead.

4.2 Gaussian Process Emulator

The central component of the UQ method is Gaussian Process regression, which serves as the surrogate model in the
UQ workflow adopted here. Given a set of input variables and target values, the Gaussian Process interpolates those
values using a multivariate Gaussian distribution using user-specified mean and covariance functions and priors on the
hyperparameter values (if desired). Fitting the Gaussian process requires inverting the covariance matrix computed
from the training data, which is done using Cholesky decomposition as the covariance matrix is symmetric and positive

17

Multi-Output GP Emulator Documentation, Release 0.7.0

definite (complexity is O(n?), where n is the number of training points). The squared exponential covariance function
contains several hyperparameters, which includes a length scale for each input variable and an overall variance. These
hyperparameters can be set manually, or chosen automatically by minimizing the negative logarithm of the posterior
marginalized over the data. Once the hyperparameters are fit, predictions can be made efficiently (complexity O(n)
for each prediction, where n is again the number of training points), and the variance computed (complexity O(n?)
for each prediction).

The code assumes that the simulations are exact and attempts to interpolate between them. However, in some cases, if
two training points are too close to one another the resulting covariance matrix is singular due to the co-linear points.
A “nugget” term (noise added to the diagonal of the covariance matrix) can be added to prevent a singular covariance
matrix. This nugget can be specified in advance (if the observations have a fixed uncertainty associated with them),
or can be estimated. Estimating the nugget can treat the nugget as a hyperparameter that can be optimised, or find the
nugget adaptively by attempting to make the nugget as small as necessary in order to invert the covariance matrix. In
practice, the adaptive nugget is the most robust, but requires additional computational effort as the matrix is factored
multiple times during each optimisation step.

4.2.1 Covariance Functions

The library implements two stationary covariance functions: Squared Exponential and Matern 5/2. These can be
specified when creating a new emulator.

4.2.2 Mean Functions

A Mean Function can be specified using R-style formulas. By default, these are parsed with the pat sy library (if it is
installed), so R users are encouraged to install this pacakge. However, mogp_emulator has its own built-in parser
to construct mean functions from a string. Mean functions can also be constructed directly from a rich language mean
function classes.

4.2.3 Hyperparameters

There are two types of hyperparameters for a GP emulator, those associated with mean functions, and those associ-
ated with the covariance kernel. All mean function hyperparameters are treated on a linear scale, while the kernel
hyperparameters are on a logarithmic scale as all kernel parameters are constrained to be positive. The first part of
the hyperparameter array contains the n,,.q, mean function parameters (i.e. if the mean function has 4 parameters,
then the first 4 entries in the hyperparameter array belong to the mean function), then come the D correlation length
hyperparameters (the same as the number of inputs), followed by the covariance and nugget hyperparameters. This
means that the total number of hyperparameters depends on the mean function specification and is 7yeqn + D + 2.

To interpret the correlation length hyperparameters, the relationship between the reported hyperparameter 6 and the
correlation length d is exp(—6) = d?. Thus, a large positive value of § indicates a small correlation length, and a large
negative value of 6 indicates a large correlation length.

The covariance scale o2 can be interpreted as exp(f) = 2. Thus, in this case a large positive value of ¢ indicates a
large overall variance scale and a large negative value of 6 indicates a small variance scale.

If the nugget is estimated via hyperparmeter optimisation, the nugget is determined by exp(#) = J, where ¢ is added
to the diagonal of the covariance matrix. Large positive values of § indicates a large nugget and a large negative value
of # indicates a small nugget. The nugget value can always be extracted on a linear scale via the nugget attribute of
a GP regardless of how it was fit, so this is the most reliable way to determine the nugget.

18 Chapter 4. Details on the Method

Multi-Output GP Emulator Documentation, Release 0.7.0

4.2.4 Hyperparameter Priors

Prior beliefs can be specified on hyperparameter values. Exactly how these are interpreted depends on the type of
hyperparameter and the type of prior distribution. For normal prior distributions, these are applied directly to the
hyperparameter values with no transformation. Thus, for mean function hyperparameters, a normal distribution is
assumed for a normal prior, while for kernel parameters a lognormal distribution is assumed.

For the Gamma and Inverse Gamma priors, the distribution is only defined over positive hyperparameter values, so all
parameters are exponentiated and then the exponentiated value is used when computing the log PDF.

4.3 Multi-Output GP

Simulations with multiple outputs can be fit by assuming that each output is fit by an independent emulator. The code
allows this to be done in parallel using the Python multiprocessing library. This is implemented in the MultiOutputGP
class, which exhibits an interface that is nearly identical to that of the main GaussianProcess class.

4.4 Estimating Hyperparameters

For regular and Multi-Output GPs, hyperparameters are fit using the £it_GP_MAP function in the fitting module,
using L-BFGS optimisation on the negative log posterior. This modifies the hyperparameter values of the GP or
MOGTP object, returning a fit object that can be used for prediction.

4.5 History Matching

The final component of the UQ workflow is the calibration method. This library implements History Matching to
perform model calibration to determine which points in the input space are plausible given a set of observations.
Performing History Matching requires a fit GP emulator to a set of simulator runs and an observation associated
with the simulator output. The emulator is then used to efficiently estimate the simulator output, accounting for all
uncertainties, to compare with observations and points that are unlikely to produce the observation can then be “ruled
out” and deemed implausible, reducing the input space to better understand the system under question.

At the moment, History Matching is only implemented for a single output and a single set of simulation runs. Future
work will extend this to multiple outputs and multiple waves of simulations.

4.3. Multi-Output GP 19

Multi-Output GP Emulator Documentation, Release 0.7.0

20

Chapter 4. Details on the Method

CHAPTER B

Gaussian Process Demo (Python)

This demo illustrates some various examples of fitting a GP emulator to results of the projectile problem discussed in
the Tutorial. It shows a few different ways of estimating the hyperparameters. The first two use Maximum Likelihood
Estimation with two different kernels (leading to similar performance), while the third uses a linear mean function and
places prior distributions on the hyperparameter values. The MAP estimation technique generally leads to significantly
better performance for this problem, illustrating the benefit of setting priors.

import numpy as np
import mogp_emulator
from projectile import simulator, print_results

additional GP examples using the projectile demo
define some common variables

n_samples = 20
n_preds 10

Experimental design —— requires a list of parameter bounds if you would like to use
uniform distributions. If you want to use different distributions, you

can use any of the standard distributions available in scipy to create

the appropriate ppf function (the inverse of the cumulative distribution).
Internally, the code creates the design on the unit hypercube and then uses

the distribution to map from [0,1] to the real parameter space.

HH FH W W H H

ed = mogp_emulator.LatinHypercubeDesign([(-5., 1.), (0., 1000.)1)
sample space

inputs = ed.sample (n_samples)

run simulation

targets = np.array([simulator(p) for p in inputs])

(continues on next page)

21

Multi-Output GP Emulator Documentation, Release 0.7.0

(continued from previous page)

HEFFHRAAAAAFFFRAARAAFFFRRAAAFFFRRAAAAFFFRRAAAAFFFRRAAAAFFFREAAAAFFFRRAAAAFFFRRAAAAS
First example —-— fit GP using MLE and Squared Exponential Kernel and predict
print ("Example 1: Basic GP")

create GP and then fit using MLE

gp = mogp_emulator.GaussianProcess (inputs, targets)

gp = mogp_emulator.fit_GP_MAP (gp)

create 20 target points to predict

predict_points = ed.sample (n_preds)

means, variances, derivs = gp.predict (predict_points)

print_results (predict_points, means)
AAFHAFFHARFHAFFRAFFHAFFHAFHAAFHAAFRAAFRAAFHAFFRAFFHAFFRAFFRAFFAAAFAAFHAAFEAAFRAA A

Second Example: How to change the kernel, use a fixed nugget, and create directly,,
—using fitting function

print ("Example 2: Matern Kernel")
you can simply pass the args to GP to the fitting function
gp_matern = mogp_emulator.fit_GP_MAP (inputs, targets, kernel='Matern52', nugget=1.e-8)

return type from predict method is an object with mean, unc, etc defined as_
—attributes

pred_res = gp_matern.predict (predict_points)

print_results (predict_points, pred_res.mean)
FAFRFAAAAFAFARAAAAAAFAAAAAAFAAARARFAAAHARAAFAEA A A RFA R A AFA R R RA AR R A AF AR
Third Example: Specify a mean function and set priors to Fit Hyperparameters via MAP
print ("Example 3: Mean Function and MAP fitting")

This example uses a linear mean function and sets priors on the hyperparameters

Linear mean has 3 hyperparameters (intercept and 2 slopes, one for each input)

Kernel has 3 hyperparameters (2 correlation lengths, 1 covariance scale)

Nugget is the final hyperparameter (7 in total)

Use a normal prior on all mean function values (requires mean, std)

Use a normal prior on correlation lengths (which are on a log scale, so becomes a,
—~lognormal

distribution once raw values on log scale are converted to linear scale)

Inverse Gamma distribution on covariance (favors large values)
Gamma distribution on nugget (favors negative values)

(continues on next page)

22 Chapter 5. Gaussian Process Demo (Python)

Multi-Output GP Emulator Documentation, Release 0.7.0

(continued from previous page)

priors = [mogp_emulator.Priors.NormalPrior (0., 10),
mogp_emulator.Priors.NormalPrior (0., 10.),
mogp_emulator.Priors.NormalPrior (0., 10.)
mogp_emulator.Priors.NormalPrior (0., 1.)
mogp_emulator.Priors.NormalPrior (-10., 1
mogp_emulator.Priors.InvGammaPrior (1., 1.),
mogp_emulator.Priors.GammaPrior (1., 1.)]

create GP, passing list of priors and a string representing the mean function
tell it to estimate the nugget as well

gp_map = mogp_emulator.GaussianProcess (inputs, targets, mean="x[0]+x[1]",
—priors=priors, nugget="fit")

[

fit hyperparameters

gp_map = mogp_emulator.fit_GP_MAP (gp_map)

gp can be called directly if only the means are desired
pred_means = gp_map (predict_points)

print_results (predict_points, pred_means)

23

Multi-Output GP Emulator Documentation, Release 0.7.0

24 Chapter 5. Gaussian Process Demo (Python)

CHAPTER O

Multi-Output Tutorial

Note: This tutorial requires Scipy version 1.4 or later to run the simulator.

This page includes an end-to-end example of using mogp_emulator to perform model calibration with a simulator
with multiple outputs. Note that this builds on the main tutorial with a second output (in this case, the velocity of the

projectile at the end of the simulation), which is able to further constrain the NROY space as described in the first
tutorial.

import numpy as np
from projectile import simulator_multioutput, print_results
import mogp_emulator

try:
import matplotlib.pyplot as plt
makeplots = True

except ImportError:
makeplots = False

An end-to-end tutorial illustrating model calibration with multiple outputs using,,
—mogp_emulator

First, we need to set up our experimental design. We would like our drag,
—coefficient to be

on a logarithmic scale and initial velocity to be on a linear scale. However, our,
—simulator

does the drag coefficient transformation for us, so we simply can specity the_
—exponent on

a linear scale.

We will use a Latin Hypercube Design. To specify, we give the distribution that we_
—would like

the parameter to take. By default, we assume a uniform distribution between two,,
—endpoints, which

we will use for this simulation.

(continues on next page)

25

Multi-Output GP Emulator Documentation, Release 0.7.0

(continued from previous page)

Once we construct the design, can draw a specified number of samples as shown.

if _name_ == "_main__ ": # this is required for multiprocessing to work correctly!
1lhd = mogp_emulator.LatinHypercubeDesign([(-5., 1.), (0., 1000.)1])
n_simulations = 50
simulation_points = lhd.sample(n_simulations)

Run simulator. For the multioutput simulator, returns (distance, velocity) pair

simulation_output = np.array([simulator_multioutput (p) for p in simulation_
—points]) .T

Next, fit the surrogate MOGP model using MAP with the default priors
Print out hyperparameter values as correlation lengths and sigma

gp = mogp_emulator.MultiOutputGP (simulation_points, simulation_output, nugget="fit

:_)")

gp = mogp_emulator.fit_GP_MAP (gp, n_tries=2)
print ("Correlation lengths (distance)= {}".format (gp.emulators[0].theta.corr))
print ("Correlation lengths (velocity)= {}".format (gp.emulators|[1l].theta.corr))
print ("Sigma (distance)= {/}".format (np.sqgrt (gp.emulators[0].theta.cov)))
print ("Sigma (velocity)= {/}".format (np.sqgrt (gp.emulators[l].theta.cov)))
print ("Nugget (distance)= {/".format (np.sqrt (gp.emulators[0].theta.nugget)))
print ("Nugget (velocity)= {}".format (np.sqgrt (gp.emulators([1l].theta.nugget)))

Validate emulator by comparing to true simulated value

To compare with the emulator, use the predict method to get mean and variance

values for the emulator predictions and see how many are within 2 standard

deviations

n_valid = 10

validation_points = lhd.sample(n_valid)

validation_output = np.array([simulator_multioutput (p) for p in validation_
—points]) .T

predictions = gp.predict (validation_points)

print_results(validation_points, predictions.mean)

He

Finally, perform history matching. Sample densely from the experimental design and
determine which points are consistent with the data using the GP predictions
We compute which points are "Not Ruled Out Yet" (NROY)

He

He

Note that our observations are now vectors, with the same ordering as the
simulation output

n_predict = 10000
prediction_points = lhd.sample (n_predict)

hm = mogp_emulator.HistoryMatching (gp=gp, coords=prediction_points, obs=[np.
—array ([2000., 100.7),
np.
—array ([100., 5.1)1)

(continues on next page)

26 Chapter 6. Multi-Output Tutorial

Multi-Output GP Emulator Documentation, Release 0.7.0

(continued from previous page)

nroy_points = hm.get_NROY (rank=0)
print ("Ruled out of points".format (n_predict - len(nroy_points), n_predict))
If plotting enabled, visualize results

if makeplots:

plt.figure()

plt.plot (prediction_points[nroy_points, 0], prediction_points|[nroy_points,1],
—"o", label="NROY points")

plt.plot (simulation_points[:,0], simulation_points[:,1],"o", label=
—"Simulation Points")

plt.xlabel ("log Drag Coefficient™")

plt.ylabel ("Launch velocity (m/s)")

plt.legend()

plt.show ()

One thing to note about multiple outputs is that they must be run as a script witha if _ _name_ == _ _main___
block in order to correctly use the multiprocessing library. This can usually be done as in the example for short scripts,
while for more complex analyses it is usually better to define functions (as in the benchmark for multiple outputs).

6.1 More Details

More details about these steps can be found in the Uncertainty Quantification Methods section, or on the following
page that goes into more details on the options available in this software library. For more on the specific implemen-
tation detials, see the various implementation pages describing the software components.

6.1. More Details 27

Multi-Output GP Emulator Documentation, Release 0.7.0

28

Chapter 6. Multi-Output Tutorial

CHAPTER /

Gaussian Process Kernel Demos (Python)

This demo illustrates use of some of the different kernels available in the package and how they can be set. In
particular, it shows use of the ProductMat 52 kernel and the UniformSgExp kernel and how these kernels give
slightly different optimal hyperparameters on the same input data.

import numpy as np

import mogp_emulator

from mogp_emulator.Kernel import UniformSgExp
from projectile import print_results

additional GP examples using different Kernels
define some common variables

n_samples = 20
n_preds = 10

define target function

def f(x):
return 4.+np.exp (-0.5% ((x[0] — 2.)*%x2/2. + (x[1]

4.)%%x2/0.25))

Experimental design —-- requires a list of parameter bounds 1f you would like to use
uniform distributions. If you want to use different distributions, you

can use any of the standard distributions available in scipy to create

the appropriate ppf function (the inverse of the cumulative distribution).
Internally, the code creates the design on the unit hypercube and then uses

the distribution to map from [0,1] to the real parameter space.

S R R R W W

ed = mogp_emulator.LatinHypercubeDesign ([(0., 5.), (0., 5.)1)
sample space

inputs = ed.sample (n_samples)

(continues on next page)

29

Multi-Output GP Emulator Documentation, Release 0.7.0

(continued from previous page)

run simulation

targets = np.array([f(p) for p in inputs])
FHEARFRAFFRAFFAAFFAAFHAAFHAAFRAFFEAAFRAAF AR FHAAF AR HAAH A AR F AR F AR SRS
First example ——- standard Squared Exponential Kernel

print ("Example 1: Squared Exponential")

create GP and then fit using MLE

gp = mogp_emulator.GaussianProcess (inputs, targets)

gp = mogp_emulator.fit_GP_MAP (gp)

look at hyperparameters (correlation lengths, covariance, and nugget)

print ("Correlation lengths: {}".format (gp.theta.corr))
print ("Covariance: {)".format (gp.theta.cov))
print ("Nugget: {/}".format (gp.theta.nugget))

create 20 target points to predict

predict_points = ed.sample (n_preds)

means, variances, derivs = gp.predict (predict_points)

print_results (predict_points, means)
ldidaddddaddddadaidddaddadaddddaddidadidiadiddaddddadadidadaddddaddddaddidad AR AR A
Second Example: Specify Kernel using a string

print ("Example 2: Product Matern Kernel")

You may use a string matching the name of the Kernel type you wish to use

gp_matern = mogp_emulator.fit_GP_MAP (inputs, targets, kernel='ProductMatb52', nugget=1.
<—>e_8)

look at hyperparameters (correlation lengths, covariance, and nugget)

print ("Correlation lengths: {/}".format (gp_matern.theta.corr))
print ("Covariance: {}".format (gp_matern.theta.cov))
print ("Nugget: {/}".format (gp_matern.theta.nugget))

return type from predict method is an object with mean, unc, etc defined as_
—attributes

means, variances, derivs = gp_matern.predict (predict_points)
print_results (predict_points, means)
#tHE#AF A HAF A FAF A RAF AR AR AR AR AR AR F AR A AR F AR AR AR A AR A AR H AR

Third Example: Use a Kernel object

(continues on next page)

30 Chapter 7. Gaussian Process Kernel Demos (Python)

Multi-Output GP Emulator Documentation, Release 0.7.0

(continued from previous page)

print ("Example 3: Use a Kernel Object")

The UniformSgExp object only has a single correlation length for all inputs
kern = UniformSgExp ()

gp_uniform = mogp_emulator.GaussianProcess (inputs, targets, kernel=kern)

fit hyperparameters

gp_uniform = mogp_emulator.fit_GP_MAP (gp_uniform)

Note that only a single correlation length

print ("Correlation length: {/}".format (gp_uniform.theta.corr))
print ("Covariance: {}".format (gp_uniform.theta.cov))
print ("Nugget: {/}".format (gp_uniform.theta.nugget))

gp can be called directly if only the means are desired
means, variances, derivs = gp_uniform.predict (predict_points)

print_results (predict_points, means)

31

Multi-Output GP Emulator Documentation, Release 0.7.0

32 Chapter 7. Gaussian Process Kernel Demos (Python)

CHAPTER 8

Mutual Information for Computer Experiments (MICE) Demos

This demo shows how to use the MICEDesign class to run a sequential experimental design. The predictions of a GP
on some test points is compared between an LHD and the MICE design, showing that the performance of the MICE
design is a significant improvement.

import mogp_emulator
import numpy as np
from projectile import simulator, print_results

simple MICE examples using the projectile demo

Base design —-—- requires a list of parameter bounds if you would like to use
uniform distributions. If you want to use different distributions, you

can use any of the standard distributions available in scipy to create

the appropriate ppf function (the inverse of the cumulative distribution).
Internally, the code creates the design on the unit hypercube and then uses
the distribution to map from [0,1] to the real parameter space.

S HH R W H

lhd = mogp_emulator.LatinHypercubeDesign([(-5., 1.), (0., 1000.)1)
FHAFAFHAHAFHAHAFEAHAF A EAF AR F A EA AR AR FAF AR A A FAF A F AR F AR AR A AR
first example —-— run entire design internally within the MICE class.

first argument is base design (required), second is simulator function (optional,
but required if you want the code to run the simualtions internally)

He

Other optional arguments include:

n_samples (number of sequential design steps, optional, default is not specified
meaning that you will specify when running the sequential design)

n_init (size of initial design, default 10)

n_cand (number of candidate points, default is 50)

nugget (nugget parameter for design GP, default is to set adaptively)

nugget_s (nugget parameter for candidate GP, default is 1.)

S H W HH R R R

(continues on next page)

33

Multi-Output GP Emulator Documentation, Release 0.7.0

(continued from previous page)

n_init = 5
n_samples = 20
n_cand = 100

md = mogp_emulator.MICEDesign(lhd, simulator, n_samples=n_samples, n_init=n_init, n_
—cand=n_cand)

md.run_sequential_design ()
get design and outputs

inputs = md.get_inputs ()
targets = md.get_targets()

print ("Example 1:")

print ("Design inputs:\n", inputs)
print ("Design targets:\n", targets)
print ()

FHEAFFRAFFRAFFRAFFRAFHAAFHAAFRAAFEAAFEAFFRAFFHAFFRAFFRAFFAAFF A AR AR AR HAS
second example: run design manually

md2 = mogp_emulator.MICEDesign (lhd, n_init=n_init, n_cand=n_cand)

init_design = md2.generate_initial_design{()

print ("Example 2:")
print ("Initial design:\n", init_design)

run initial points manually
init_targets = np.array([simulator(s) for s in init_design])
set initial targets
md2.set_initial_targets (init_targets)
run 20 sequential design steps
for d in range(n_samples) :
next_point = md2.get_next_point ()
next_target = simulator (next_point)
md2.set_next_target (next_target)

look at design and outputs

inputs = md2.get_inputs()
targets = md2.get_targets()

print ("Final inputs:\n", inputs)
print ("Final targets:\n", targets)

look at final GP emulator and make some predictions to compare with 1lhd

lhd_design = lhd.sample(n_init + n_samples)

(continues on next page)

34 Chapter 8. Mutual Information for Computer Experiments (MICE) Demos

Multi-Output GP Emulator Documentation, Release 0.7.0

(continued from previous page)

gp_lhd = mogp_emulator.fit_GP_MAP (lhd_design, np.array([simulator(p) for p in lhd_
—design]))

gp_mice = mogp_emulator.GaussianProcess (inputs, targets)

gp_mice = mogp_emulator.fit_GP_MAP (inputs, targets)

test_points =

print ("LHD:")
print_results (test_points,
print ()

print ("MICE:")
print_results (test_points,

lhd.sample (10)

gp_lhd (test_points))

gp_mice (test_points))

35

Multi-Output GP Emulator Documentation, Release 0.7.0

36

Chapter 8. Mutual Information for Computer Experiments (MICE) Demos

CHAPTER 9

History Matching Demos

This demo shows how to carry out History Matching using a GP emulator. The two examples show how a fit GP can
be passed directly to the HistoryMatching class, or how the predictions object can be passed instead. The demo also
shows how other options can be set.

import mogp_emulator
import numpy as np

simple History Matching example
simulator function —- needs to take a single input and output a single number

def f(x):
return np.exp (-np.sum((x-2.)**2, axis = -1)/2.)

Experimental design —-- requires a list of parameter bounds if you would like to use
uniform distributions. If you want to use different distributions, you

can use any of the standard distributions available in scipy to create

the appropriate ppf function (the inverse of the cumulative distribution).
Internally, the code creates the design on the unit hypercube and then uses

the distribution to map from [0,1] to the real parameter space.

S o HH KR R R

ed = mogp_emulator.LatinHypercubeDesign ([(0., 5.), (0., 5.)1])

sample space, use many samples to ensure we get a good emulator
inputs = ed.sample (50)

run simulation

targets = np.array([f(p) for p in inputs])

Example observational data is a single number plus an uncertainty.

In this case we use a number close to 1, which should have a corresponding
input close to (2,2) after performing history matching

(continues on next page)

37

Multi-Output GP Emulator Documentation, Release 0.7.0

(continued from previous page)

FHHARFRAFFRAFFAAFFAAFRAAFEAAFRAFFEAAFEAAF AR FHAAF AR HAAF R AR F AR FEAAF AR A SRS
First step -- fit GP using MLE and Squared Exponential Kernel

gp = mogp_emulator.GaussianProcess (inputs, targets)

gp = mogp_emulator.fit_GP_MAP (gp)
HHFFHRRAAAAFFFRAARAAFFFRRAAAAFFRRAAAAFFFRRAARAFFFRRAAAAFFFREAAAAFFFREAAAAFFFARAAAA
First Example: Use HistoryMatching class to make the predictions

print ("Example 1: Make predictions with HistoryMatching object")

create HistoryMatching object, set threshold to be low to make printed output
easier to read

threshold = 0.01
hm = mogp_emulator.HistoryMatching (threshold=threshold)

For this example, we set the observations, GP, and the coordinates

observations 1is either a single float (the value) or two floats (value and
uncertainty as a variance)

obs = [1., 0.08]

hm.set_obs (obs)

hm.set_gp (gp)

set coordinates of GP object where we will test if the points can plausbily
explain the data here we use our existing experimental design, but sample

10000 points

coords = ed.sample (10000)
hm.set_coords (coords)

calculate implausibility metric
implaus = hm.get_implausibility ()
print points that we have not ruled out yet:

for p, im in zip(coords[hm.get_NROY ()], implaus[hm.get_NROY()]):
print ("Sample point: {} Implausibility: {/}".format (p, im))

iddzadsdadasadasdsasdsasdsasdsatisasdadddaaddssddadadatdsatdsaddsasisasdaaddsaddsidiad
Second Example: Pass external GP predictions and add model discrepancy

print ("Example 2: External Predictions and Model Discrepancy")

use gp to make predictions on 10000 new points externally

coords = ed.sample (10000)

expectations = gp.predict (coords)

(continues on next page)

38 Chapter 9. History Matching Demos

Multi-Output GP Emulator Documentation, Release 0.7.0

(continued from previous page)

now create HistoryMatching object with these new parameters

hm_extern = mogp_emulator.HistoryMatching (obs=obs, expectations=expectations,
threshold=threshold)

calculate implausibility, adding a model discrepancy (as a variance)
implaus_extern = hm_extern.get_implausibility (0.1)
print points that we have not ruled out yet:

for p, im in zip(coords[hm_extern.get_NROY ()], implaus_extern[hm extern.get_NROY()]) :
print ("Sample point: Implausibility: ".format (p, im))

39

Multi-Output GP Emulator Documentation, Release 0.7.0

40

Chapter 9. History Matching Demos

cHAaPTER 10

Kernel Dimension Reduction (KDR) Demos

This demo shows how to use the gKDR class to perform dimension reduction on the inputs to an emulator. The
examples show how dimension reduction with a known number of dimensions can be fit, as well as how the class can
use cross validation to infer a best number of dimensions from the data itself.

import mogp_emulator
import numpy as np

simple Dimension Reduction examples

simulator function —- returns a single "important" dimension from
at least 4 inputs

def f(x):
return (x[0]-x[1]+2.xx[3])/3.

Experimental design —-- create a design with 5 input parameters
all uniformly distributed over [0,1].

ed = mogp_emulator.LatinHypercubeDesign (5)
sample space

inputs = ed.sample (100)

run simulation

targets = np.array([f(p) for p in inputs])
AAFHAFHHARFHAFFRAFFHAFFAAFHAAFHAAFHAAFRAFFEAFFRAFFHAFFRAFFRAFFHAFFAAFHAAFRAAFRAA A
First example —- dimension reduction given a specified number of dimensions

(note that in real life, we do not know that the underlying simulation only
has a single dimension)

(continues on next page)

41

Multi-Output GP Emulator Documentation, Release 0.7.0

(continued from previous page)

print ("Example 1: Basic Dimension Reduction")

create DR object with a single reduced dimension (K = 1)
dr = mogp_emulator.gKDR (inputs, targets, K=1)

use it to create GP

gp = mogp_emulator.fit_GP_MAP (dr (inputs), targets)

create 5 target points to predict

predict_points = ed.sample (5)
predict_actual = np.array([f(p) for p in predict_points])

means = gp (dr (predict_points))

for pp, m, a in zip(predict_points, means, predict_actual):

1

print ("Target point: {} Predicted mean: {} Actual mean: {}".format (pp, m, a))
HAARFAAAHARARARFAAAAARFAFAFARAAFAFARARA AR A AA AR R A AFA AR RA AR R A AF AR
Second Example: Estimate dimensions from data
print ("Example 2: Estimate the number of dimensions from the data")

Use the tune_parameters method to use cross validation to create DR object

Note this is more realistic than the above as it does not know the

number of dimensions in advance

dr_tuned, loss = mogp_emulator.gKDR.tune_parameters (inputs, targets,
mogp_emulator.fit_GP_MAP,
cXs=[3.], cY¥Ys=[3.])

Get number of inferred dimensions (usually gives 2)

print ("Number of inferred dimensions is {}".format (dr_tuned.K))

use object to create GP

gp_tuned = mogp_emulator.fit_GP_MAP (dr_tuned(inputs), targets)

create 10 target points to predict

predict_points = ed.sample (5)
predict_actual = np.array([f(p) for p in predict_points])

means = gp_tuned (dr_tuned (predict_points))

for pp, m, a in zip(predict_points, means, predict_actual):
print ("Target point: {} Predicted mean: {} Actual mean: {}".format (pp, m, a))

42 Chapter 10. Kernel Dimension Reduction (KDR) Demos

cHAPTER 11

Gaussian Process Demo (GPU)

This demo illustrates a simple example of fitting a GP emulator to results of the projectile problem discussed in the
Tutorial, using the GPU implementation of the emulator.

Note that in order for this to work, it must be run on a machine with an Nvidia GPU, and with CUDA libraries
available. It also depends on Eigen and pybind.

The example uses Maximum Likelihood Estimation with a Squared Exponential kernel, which is currently the only
kernel supported by the GPU implementation.

import numpy as np
import mogp_emulator
from projectile import simulator, print_results

GP example using the projectile demo on a GPU

To run this demo you must be on a machine with an Nvidia GPU, and with
CUDA libraries available. There are also dependencies on eigen and pybindll
If you are working on a managed cluster, these may be available via commands

module load cuda/11.2

module load py-pybindll-2.2.4-gcc-5.4.0-tdtz6iqg
module load gcc/7

module load eigen

S o O R R W R R R R

You should then be able to compile the cuda code at the same time as installing the_
—mogp_emulator package, by doing (from the main mogp_emulator/ directory:

pip install

(note that if you don't have write access to the global directory

(e.g. if you are on a cluster such as CSD3), you should add the

'——-user' flag to this command)

define some common variables

n_samples = 20

(continues on next page)

43

Multi-Output GP Emulator Documentation, Release 0.7.0

(continued from previous page)

n_preds = 10

Experimental design —— requires a list of parameter bounds if you would like to use
uniform distributions. If you want to use different distributions, you

can use any of the standard distributions available in scipy to create

the appropriate ppf function (the inverse of the cumulative distribution).
Internally, the code creates the design on the unit hypercube and then uses

the distribution to map from [0,1] to the real parameter space.

S o HH R W H

ed = mogp_emulator.LatinHypercubeDesign([(-5., 1.), (0., 1000.)1)

sample space

inputs = ed.sample (n_samples)

run simulation

targets = np.array([simulator(p) for p in inputs])
ldddaddsdaddsdasatdadasdadatdadatdadatsadatssdadasdadatdadaddadaddidaddidadsiddsssidi
Basic example —— fit GP using MLE and Squared Exponential Kernel and predict
print ("Example: Basic GP")

create GP and then fit using MLE

the only difference between this and the standard CPU implementation

is to use the GaussianProcessGPU class rather than GaussianProcess.

gp = mogp_emulator.GaussianProcessGPU (inputs, targets)

gp = mogp_emulator.fit_GP_MAP (gp)

create 20 target points to predict

predict_points = ed.sample (n_preds)

means, variances, derivs = gp.predict (predict_points)

print_results (predict_points, means)

44 Chapter 11. Gaussian Process Demo (GPU)

cHAPTER 12

Gaussian Process Demo (R)

=

Short demo of how to fit and use the GP class to predict unseen values based on a
mean function and prior distributions.

B

Before loading reticulate, you will need to configure your Python Path to
use the correct Python version where mogp_emulator is installed.
mogp_emulator requires Python 3, but some OSs still have Python 2 as the
default, so you may not get the right one unless you explicitly configure
it in reticulate. I use the Python that I installed on my Mac with homebrew,
though on Linux the Python installed via a package manager may have a
different path.

H o S o W HE e

The environment variable is RETICULATE_PYTHON, and I set it to
"/usr/local/bin/python" as this is the Python where mogp_emulator is installed.
This is set automatically in my .Renviron startup file in my home directory,
but you may want to configure it some other way. No matter how you decide

to configure it, you have to set it prior to loading the reticulate library.

H oW o #

library(reticulate)

mogp_emulator <- import ("mogp_emulator")
mogp_priors <- import ("mogp_emulator.Priors")

create some data

n_train <- 10

X_scale <- 2.

x1l <- runif(n_train)*x_scale
x2 <— runif(n_train)*x_scale
y <— exp(—x1xx2 — xX2%x%x2)

x <- data.frame(x1l, x2, V)

GaussianProcess requires data as a matrix, but often you may want to do some
regression using a data frame in R. To do this, we can split this data frame
into inputs, targets, and a dictionary mapping column names to integer indices

=

(continues on next page)

45

Multi-Output GP Emulator Documentation, Release 0.7.0

(continued from previous page)

using the function below

extract_targets <- function(df, target_cols = list("y")) {
"separate a data frame into inputs, targets, and inputdict for use with GP class"

for (t in target_cols) {
stopifnot (t %$in% names (x))

n_targets <- length(target_cols)

inputs <- matrix (NA, ncol=ncol (x) - n_targets, nrow=nrow(x))
targets <- matrix (NA, ncol=n_targets, nrow=nrow (x))
inputdict <- dict ()

input_count <- 1
target_count <- 1

for (n in names (x)) {
if (n %in% target_cols) {
targets|[,target_count] <- as.matrix(x[n])

} else {
inputs [, input_count] <- as.matrix(x[n])
inputdict [n] <- as.integer (input_count - 1)

input_count <- input_count + 1

if (n_targets == 1) {
targets <- c(targets)

return (list (inputs, targets, inputdict))

target_list <- extract_targets (x)
inputs <- target_list[[1]]
targets <- target_list[[2]]

inputdict <- target_list[[3]]

Create the mean function formula as a string (or you could extract from the
formula found via regression). If you want correct expansion of your formula
in the Python code, you will need to install the patsy package (it is pip
installable) as it is used internally in mogp_emulator to parse formulas.

H o W H

S

Additionally, you will need to convert the column names from the data frame
to integer indices in the inputs matrix. This is done with a dict object as
illustrated below.

ETS

mean_func <= "y ~ x1 + x2 + I (x1xx2)"

Priors are specified by giving a list of prior objects (or NULL if you

wish to use weak prior information). Each distribution has some parameters
to set -- NormalPrior is (mean, std), Gamma is (shape, scale), and
InvGammaPrior is (shape, scale). See the documentation or code for the exact
functional format of the PDF.

e

(continues on next page)

46 Chapter 12. Gaussian Process Demo (R)

Multi-Output GP Emulator Documentation, Release 0.7.0

(continued from previous page)

If you don't know how many parameters you need to specify, it depends on
the mean function and the number of input dimensions. Mean functions

have a fixed number of parameters (though in some cases this can depend

on the dimension of the inputs as well), and then covariance functions have
one correlation length per input dimension plus a covariance scale and

a nugget parameter.

S o S o 3

4=

If in doubt, you can create the GP instance with no priors, use gp$n_params
to get the number, and then set the priors manually using gp$priors <- priors

TS

In this case, we have 4 mean function parameters (normal distribution on a
linear scale), 2 correlations lengths (normal distribution on a log scale,
so lognormal), a sigma”2 covariance parameter (inverse gamma) and a nugget
#

(Gamma) . If you choose an adaptive or fixed nugget, the nugget prior is ignored.
priors <- list (mogp_priors$NormalPrior (0., 1.),
mogp_priors$NormalPrior (0., 1.),
mogp_priors$NormalPrior (0., 1.),
mogp_priors$NormalPrior (0., 1.),
mogp_priors$NormalPrior (0., 1.),
mogp_priors$NormalPrior (0., 1.),
mogp_priors$InvGammaPrior (2., 1.),
)

mogp_priors$GammaPrior (1., 0.2

Finally, create the GP instance. If we had multiple outputs, we would
create a MultiOutputGP class in a similar way, but would have the option
of giving a single mean and list of priors (assumes it is the same for
each emulator), or a list of mean functions and a list of lists of

prior distributions. nugget can also be set with a single value or a list.

s

gp <- mogp_emulator$GaussianProcess (inputs, targets,
mean=mean_func,
priors=priors,
nugget="fit",
inputdict=inputdict)

gp is fit using the fit_GP_MAP function. It accepts a GaussianProcess or
MultiOutputGP object and returns the same type of object with the
hyperparameters fit via MAP estimation, with some options for how to perform
the minimization routine. You can also pass the arguments to create a GP/MOGP
to this function and it will return the object with estimated hyperparameters

S o W o

gp <- mogp_emulator$fit_GP_MAP (gp)

print (gp$current_logpost)
print (gpStheta)

now create some test data to make predictions and compare with known values
n_test <-— 10000

x1l_test <- runif(n_test)*x_scale
x2_test <- runif(n_test)*x_scale

x_test <- cbind(xl_test, x2_test)
y_actual <- exp(-xl_testxx2 - x2_testxx2)

(continues on next page)

47

Multi-Output GP Emulator Documentation, Release 0.7.0

(continued from previous page)

y_predict <- gp$predict (x_test)

y_predict is an object holding the mean, variance and derivatives (if computed)

access the values via y_predict$mean,

y_predictS$unc, and y_predict$deriv

print (sum((y_actual - y_predict$mean) *x2)/n_test)

48

Chapter 12. Gaussian Process Demo (R)

cHAPTER 13

Gaussian Process Demo with Small Sample Size

This demo includes an example shown at the EXCALIBUR workshop held online on 24-25 September, 2020. The
example shows the challenges of fitting a GP emulator to data that is poorly sampled, and how a mean function and
hyperparameter priors can help constrain the model in a situation where a zero mean and Maximum Likelikhood
Estimation perform poorly.

The specific example uses the projectile problem discussed in the Tutorial. It draws 6 samples, which might be a
typical sampling density for a high dimensional simulator that is expensive to run, where you might be able to draw
a few samples per input parameter. It shows the true function, and then the emulator means predicted at the same
points using Maximum Likelihood Estimation and a linear mean function combined with Maximum A Posteriori
Estimation. The MLE emulator is completely useless, while the MAP estimation technique leads to significantly
better performance and an emulator that is useful despite only drawing a small number of samples.

import numpy as np
from projectile import simulator
import mogp_emulator

try:
import matplotlib.pyplot as plt
makeplots = True

except ImportError:
makeplots = False

define a helper function for making plots

def plot_solution(field, title, filename, simulation_points, validation_points, tri):
plt.figure (figsize=(4,3))
plt.tripcolor(validation_points[:,0], wvalidation_points[:,1], tri.triangles,
field, vmin=0, vmax=5000.)
cb = plt.colorbar()
plt.scatter (simulation_points[:,0], simulation_points[:,1])
plt.xlabel ("log drag coefficient")
plt.ylabel ("Launch velocity (m/s)")
cb.set_label ("Projectile distance (m)")
plt.title(title)

(continues on next page)

49

Multi-Output GP Emulator Documentation, Release 0.7.0

(continued from previous page)

plt.tight_layout ()
plt.savefig(filename, dpi=200)

A tutorial illustrating effectiveness of mean functions and priors for GP emulation

Most often, we are not able to sample very densely from a simulation, so we
have relatively few samples per input parameter. This can lead to some problems
when constructing a robust emulator. This tutorial illustrates how we can build
better emulators using the tools in mogp_emulator.

HH W H

He

We need to draw some samples from the space to run some simulations and build our
emulators. We use a LHD design with only 6 sample points.

1lhd = mogp_emulator.LatinHypercubeDesign([(-4., 0.), (0., 1000.)])

n_simulations = 6
simulation_points = lhd.sample(n_simulations)
simulation_output = np.array([simulator(p) for p in simulation_points])

Next, fit the surrogate GP model using MLE, zero mean, and no priors.
Print out hyperparameter values as correlation lengths, sigma, and nugget

gp = mogp_emulator.GaussianProcess (simulation_points, simulation_output)
gp = mogp_emulator.fit_GP_MAP (gp)

print ("Zero mean and no priors:")

print ("Correlation lengths = {}".format (np.sqrt (np.exp(-gp.thetal:2]))))
print ("Sigma = {/}".format (np.sqgrt (np.exp(gp.thetal2]))))

print ("Nugget = {}".format (gp.nugget))

print ()

We can look at how the emulator performs by comparing the emulator output to
a large number of validation points. Since this simulation is cheap, we can
actually compute this for a large number of points.

n_valid = 1000
validation_points = lhd.sample(n_valid)
validation_output = np.array([simulator(p) for p in wvalidation_points])

if makeplots:
import matplotlib.tri
tri = matplotlib.tri.Triangulation((validation_points([:,0]+4.)/4.,
(validation_points([:,1]1/1000.))

plot_solution(validation_output, "True simulator", "simulator_ output.png",
simulation_points, validation_points, tri)

Now predict values with the emulator and plot output and error
predictions = gp.predict (validation_points)
if makeplots:
plot_solution (predictions.mean, "MLE emulator", "emulator_output_MLE.png",

simulation_points, validation_points, tri)

This is not very good! The simulation points are too sparsely sampled to give the
emulator any idea what to do about the function shape. We just know the value at a_

—few (continues on next page)

50 Chapter 13. Gaussian Process Demo with Small Sample Size

Multi-Output GP Emulator Documentation, Release 0.7.0

(continued from previous page)

points, and it throws up its hands and predicts zero everywhere else.

To improve this, we will specify a mean function and some priors to ensure that if_,
—we are

far away from an evaluation point we will still get some information from the_,
—emulator.

We specify the mean function using a string, which follows a similar approach to R-
—style

formulas. There is an implicit constant term, and we use x[index] to specify how we
want the formula to depend on the inputs. We choose a simple linear form here,
—which has

three fitting parameters in addition to the correlations lengths, sigma, and nugget
parameters above.

meanfunc = "x[0]+x[1]"

We now set priors for all of the hyperparameters to better constrain the estimation,
—procedure.

We assume normal priors for the mean function parameters with a large variance (to,,
—not constrain

our choice too much). Note that the mean function parameters are on a linear scale,
—while the

correlation lengths, sigma, and nugget are on a logarithmic scale. Thus, 1f we_
—choose normal

priors on the correlation lengths, these will actually be lognormal distributions.

Finally, we choose inverse gamma and gamma distributions for the priors on sigma,,
—and the nugget

as those are typical conjugate priors for variances/precisions. We pick them to be_,
—where they are as

we expect sigma to be large (as the function is very sensitive to inputs) while we_
—want the

nugget to be small.

priors = [mogp_emulator.Priors.NormalPrior (0., 10.),
mogp_emulator.Priors.NormalPrior (0., 10.),
mogp_emulator.Priors.NormalPrior (0., 10.),
mogp_emulator.Priors.NormalPrior (0., 1.),

)
mogp_emulator.Priors.NormalPrior (-10., 1.),
mogp_emulator.Priors.InvGammaPrior (1., 1.),
mogp_emulator.Priors.GammaPrior (1., 1.)]

Now, construct another GP using the mean function and priors. note that we also_,
—specify that we

want to estimate the nugget based on our prior, rather than adaptively fitting it
—as we did in

the first go.

gp_map = mogp_emulator.GaussianProcess (simulation_points, simulation_output,
mean=meanfunc, priors=priors, nugget="fit")
gp_map = mogp_emulator.fit_GP_MAP (gp_map)

print ("With mean and priors:")

print ("Mean function parameters = {}".format (gp_map.thetal[:3]))

print ("Correlation lengths = {/".format (np.sgrt (np.exp(-gp_map.thetal[3:5]1))))
print ("Sigma = {/}".format (np.sqgrt (np.exp (gp_map.thetal-2]))))

(continues on next page)

51

Multi-Output GP Emulator Documentation, Release 0.7.0

(continued from previous page)

print ("Nugget = ".format (gp_map.nugget))

Use the new fit GP to predict the validation points and plot to see if this improved
the fit to the true data:

predictions_map = gp_map.predict (validation_points)

if makeplots:
plot_solution (predictions_map.mean, "Mean/Prior emulator", "emulator_ output_ MAP.
—png",
simulation_points, validation_points, tri)

52 Chapter 13. Gaussian Process Demo with Small Sample Size

cHAPTER 14

Uncertainty Quantification Methods

14.1 The MUCM Toolkit, release 6

Welcome to the M UCM Toolkit. The toolkit is a resource for people interested in quantifying and managing uncertainty
in the outputs of mathematical models of complex real-world processes. We refer to such a model as a simulation
model or a simulator.

The toolkit is a large, interconnected set of webpages and one way to use it is just to browse more or less randomly
through it. However, we have also provided some organised starting points and threads through the toolkit.

* We have an introductory tutorial on MUCM methods and uncertainty in simulator outputs /here.

¢ You can read about the roolkit structure.

* The various threads, each of which sets out in a series of steps how to use the MUCM approach to build
an emulator of a simulator and to use it to address some standard problems faced by modellers and users of
simulation models. This release contains the following threads:

ThreadCoreGP, which deals with the simplest emulation scenario, called the core problem, using the
Gaussian process approach;

ThreadCoreBL, which also deals with the core problem, but follows the Bayes linear approach. A simple
guide to the differences between the two approaches can be found in the alternatives page on Gaussian
process or Bayes Linear Emulator (Al/tGPorBLEmulator);,

ThreadVariantMultipleOutputs, which extends the core problem to address the case where we wish to
emulate two or more simulator outputs;

ThreadVariantDynamic, which extends the core analysis in a different direction, where we wish to emulate
the time series output of a dynamic simulator;

ThreadVariantTwoLevelEmulation, which considers the situation where we have two simulators of the
same real-world phenomenon, a slow but relatively accurate simulator whose output we wish to emulate,
and a quick and relatively crude simulator. This thread discusses how to use many runs of the fast simulator
to build an informative prior model for the slow simulator, so that fewer training runs of the slow simulator
are needed;

53

Multi-Output GP Emulator Documentation, Release 0.7.0

— ThreadVariantWithDerivatives, which extends the core analysis for the case where we can obtain deriva-
tives of the simulator output with respect to the various inputs, to use as training data;

— ThreadVariantModelDiscrepancy, which deals with modelling the relationship between the simulator out-
puts and the real-world process being simulated. Recognising this model discrepancy is a crucial step in
making useful predictions from simulators, in calibrating simulation models and handling multiple models.

— ThreadGenericMultipleEmulators, which deals with combining two or more emulators to produce emula-
tion of some combination of the respective simulator outputs;

— ThreadGenericEmulateDerivatives, which shows how to use an emulator to predict the values of deriva-
tives of the simulator output;

— ThreadGenericHistoryMatching, which deals with iteratively narrowing down the region of possible input
values for which the simulator would produce outputs acceptably close to observed data. This topic is
related to calibration, which will be addressed in a future release of the toolkit.

— ThreadTopicSensitivityAnalysis, which is a topic thread providing more detailed background on the topic
of sensitivity analysis, and linking together the various procedures for such techniques in the other toolkit
threads.

— ThreadTopicScreening, which provides a broad view of the idea of screening the simulator inputs to reduce
their dimensionality.

— ThreadTopicExperimentalDesign, which gives a detailed overview of the methods of experimental design
that are relevant to MUCM, particularly those relating to the design of a training sample.

Later releases of the toolkit will add more threads and other material, including more extensive examples to guide
the toolkit user and further Case Studies. In each release we also add more detail to some of the existing threads; for
instance, in this release we have a substantial reworking of the variant thread on emulating multiple ou